Create 3D Image
This example illustrates how to create a data buffer corresponding to a 3D image, and copy it in an object connectable to an ImageDev algorithm.
To invoke an ImageDev algorithm, the data to process needs to be previously imported into an ImageView object
of the IOLink library.
The first part of this example simply creates a buffer representing a 220x192x128 pixel image with a filled cube drawn inside. This step is for demonstration purposes only. In practice, you should already have the content of the image to process in a buffer stored in the data model used by your application.
Then some IOLink instructions create a new ImageView object. The buffer previously created is copied in this image with the WriteRegion method.
An ImageDev algorithm is applied afterward to show that it is now possible to process this image with ImageDev. This is the GaussianFilter3d algorithm which introduce a blur effect between the cube surface and the image background.
Figure 1. The 3D volume generated by this example visualized with Open Inventor
See also
The first part of this example simply creates a buffer representing a 220x192x128 pixel image with a filled cube drawn inside. This step is for demonstration purposes only. In practice, you should already have the content of the image to process in a buffer stored in the data model used by your application.
Then some IOLink instructions create a new ImageView object. The buffer previously created is copied in this image with the WriteRegion method.
An ImageDev algorithm is applied afterward to show that it is now possible to process this image with ImageDev. This is the GaussianFilter3d algorithm which introduce a blur effect between the cube surface and the image background.
Figure 1. The 3D volume generated by this example visualized with Open Inventor
#include <ImageDev/Data/ImageViewHelper.h> #include <ImageDev/ImageDev.h> #include <ioformat/IOFormat.h> #include <iolink/view/ImageViewFactory.h> #include <iolink/view/ImageViewProvider.h> using namespace imagedev; using namespace ioformat; using namespace iolink; int main() { // ImageDev library initialization if ( imagedev::isInitialized() == false ) imagedev::init(); // Initialize an unsigned 8-bit array storing data of a 3D image const uint64_t rowCount = 220; const uint64_t colCount = 192; const uint64_t sliCount = 128; std::vector< uint8_t > imageData( rowCount * colCount * sliCount ); // Define a synthetic cube in this array const uint64_t side = colCount / 2; // side in pixels of the cube to draw // Loop on image slices for ( uint64_t k = 0; k < sliCount; ++k ) { // Loop on image rows for ( uint64_t i = 0; i < rowCount; ++i ) { // Loop on image columns for ( uint64_t j = 0; j < colCount; ++j ) { if ( ( i >= ( rowCount - side ) / 2 ) && ( i <= ( rowCount + side ) / 2 ) && ( j >= ( colCount - side ) / 2 ) && ( j <= ( colCount + side ) / 2 ) && ( k >= ( sliCount - side ) / 2 ) && ( k <= ( sliCount + side ) / 2 ) ) imageData[k * rowCount * colCount + i * colCount + j] = 228; // Value inside the cube else imageData[k * rowCount * colCount + i * colCount + j] = 0; // Background value } } } // Create an image view of same dimensions VectorXu64 imageShape{ colCount, rowCount, sliCount }; auto image = ImageViewFactory::allocate( imageShape, DataTypeId::UINT8 ); setDimensionalInterpretation( image, ImageTypeId::VOLUME ); // Define the region where to write the data VectorXu64 imageOrig{ 0, 0, 0 }; RegionXu64 imageRegion{ imageOrig, imageShape }; // Copy the data in the image view image->writeRegion( imageRegion, imageData.data() ); // This image can now be processed by any ImageDev algorithm, for instance for building a color image auto imageGauss = gaussianFilter3d( image, GaussianFilter3d::FilterMode::SEPARABLE, { 10.0f, 10.0f, 10.0f }, 2.0f, GaussianFilter3d::OutputType::SAME_AS_INPUT, false ); // Save the created image with IOFormat writeView( imageGauss, R"(T02_02_output.tif)" ); // ImageDev library finalization imagedev::finish(); return 0; }
using System; using ImageDev; using IOLink; using IOFormat; namespace T02_02_CreateImage3d { class Program { static void Main( string[] args ) { // Initialize the ImageDev library if not done if ( Initialization.IsInitialized() == false ) Initialization.Init(); // Initialize an unsigned 8-bit array storing data of a 3D image ulong rowCount = 220; ulong colCount = 192; ulong sliCount = 128; byte[] imageData = new byte[rowCount * colCount * sliCount]; // Define a synthetic cube in this array ulong side = colCount / 2; // side in pixels of the cube to draw // Loop on image slices for ( ulong k = 0; k < sliCount; ++k ) { // Loop on image rows for ( ulong i = 0; i < rowCount; ++i ) { // Loop on image columns for ( ulong j = 0; j < colCount; ++j ) { if ( ( i >= ( rowCount - side ) / 2 ) && ( i <= ( rowCount + side ) / 2 ) && ( j >= ( colCount - side ) / 2 ) && ( j <= ( colCount + side ) / 2 ) && ( k >= ( sliCount - side ) / 2 ) && ( k <= ( sliCount + side ) / 2 ) ) imageData[k * rowCount * colCount + i * colCount + j] = 228; // Value inside the cube else imageData[k * rowCount * colCount + i * colCount + j] = 0; // Background value } } } // Create an image view of same dimensions VectorXu64 imageShape = new VectorXu64( colCount, rowCount, sliCount ); ImageView image = ImageViewFactory.Allocate( imageShape, DataTypeId.UINT8 ); Data.SetDimensionalInterpretation( image, ImageTypeId.VOLUME ); // Define the region where to write the data VectorXu64 imageOrig = new VectorXu64( 0, 0, 0 ); RegionXu64 imageRegion = new RegionXu64( imageOrig, imageShape ); // Copy the data in the image view image.WriteRegion( imageRegion, imageData ); // This image can now be processed by any ImageDev algorithm, for instance to generate a blur effect on its // edges ImageView imageGauss = Processing.GaussianFilter3d( image, GaussianFilter3d.FilterMode.SEPARABLE, new double[] { 10.0, 10.0, 10.0 } ); // Save the created image with IOFormat ViewIO.WriteView( imageGauss, @"T02_02_output.tif" ); Initialization.Finish(); } } }
import imagedev import iolink import ioformat import numpy # Initialize the ImageDev library if not done if (imagedev.is_initialized() == False): imagedev.init() # Initialize an unsigned 8 - bit array storing data of a 3D image row_count = 220 col_count = 192 sli_count = 128 image_data = numpy.zeros((row_count , col_count , sli_count), numpy.uint8) # Define a synthetic cube in this array side = int(col_count / 2) # side in pixels of the cube to draw image_data[int((row_count - side) / 2):int((row_count + side) / 2), int((col_count - side) / 2):int((col_count + side) / 2), int((sli_count - side) / 2):int((sli_count + side) / 2)] = 228 # Create an image view of same dimensions VectorXu64 image_shape = iolink.VectorXu64(col_count, row_count, sli_count) image = iolink.ImageViewFactory.allocate(image_shape, iolink.DataTypeId_UINT8) imagedev.set_dimensional_interpretation(image, iolink.ImageTypeId.VOLUME) # Define the region where to write the data image_orig = iolink.VectorXu64(0, 0, 0) image_region = iolink.RegionXu64(image_orig, image_shape) # Copy the data in the image view image.write_region(image_region, image_data) # This image can now be processed by any ImageDev algorithm, for instance to generate a blur effect on its edges image_gauss = imagedev.gaussian_filter_3d(image, imagedev.GaussianFilter3d.FilterMode.SEPARABLE, [10.0, 10.0, 10.0]) # Save the created image with IOFormat ioformat.write_view(image_gauss, "T02_02_output.tif") # ImageDev library finalization imagedev.finish()
See also