MeanFilter3d
Computes, for each voxel of a three-dimensional image, the mean value of its neighborhood.
Access to parameter description
For an introduction:
Access to parameter description
For an introduction:
- section Images Filtering.
- section First Order Statistics Filters.
- A cube with a half side length defined by the kernelRadius parameter,
- A ball with a radius defined by the kernelRadius parameter.
Function Syntax
This function returns the outputImage output parameter.
// Function prototype. std::shared_ptr< iolink::ImageView > meanFilter3d( std::shared_ptr< iolink::ImageView > inputImage, MeanFilter3d::KernelShape kernelShape, uint32_t kernelRadius, std::shared_ptr< iolink::ImageView > outputImage = NULL );
This function returns the outputImage output parameter.
// Function prototype. mean_filter_3d( input_image, kernel_shape = MeanFilter3d.KernelShape.BALL, kernel_radius = 3, output_image = None )
This function returns the outputImage output parameter.
// Function prototype. public static IOLink.ImageView MeanFilter3d( IOLink.ImageView inputImage, MeanFilter3d.KernelShape kernelShape = ImageDev.MeanFilter3d.KernelShape.BALL, UInt32 kernelRadius = 3, IOLink.ImageView outputImage = null );
Class Syntax
Parameters
Class Name | MeanFilter3d |
---|
Parameter Name | Description | Type | Supported Values | Default Value | |||||
---|---|---|---|---|---|---|---|---|---|
inputImage |
The input image. | Image | Binary, Label, Grayscale or Multispectral | nullptr | |||||
kernelRadius |
The kernel half side length or radius, in voxels. In case of a cube, a value N produces a cube window of 2N+1 voxels side length. In case of a ball, a value N produces a ball with a 2N+1 voxels diameter. | UInt32 | >=1 | 3 | |||||
kernelShape |
The shape of the window defining the neighborhood.
|
Enumeration | BALL | ||||||
outputImage |
The output image. Its dimensions are forced to the same values as the input. Its data type is forced to floating point. | Image | nullptr |
Object Examples
auto foam = readVipImage( std::string( IMAGEDEVDATA_IMAGES_FOLDER ) + "foam.vip" ); MeanFilter3d meanFilter3dAlgo; meanFilter3dAlgo.setInputImage( foam ); meanFilter3dAlgo.setKernelShape( MeanFilter3d::KernelShape::CUBE ); meanFilter3dAlgo.setKernelRadius( 3 ); meanFilter3dAlgo.execute(); std::cout << "outputImage:" << meanFilter3dAlgo.outputImage()->toString();
foam = imagedev.read_vip_image(imagedev_data.get_image_path("foam.vip")) mean_filter_3d_algo = imagedev.MeanFilter3d() mean_filter_3d_algo.input_image = foam mean_filter_3d_algo.kernel_shape = imagedev.MeanFilter3d.CUBE mean_filter_3d_algo.kernel_radius = 3 mean_filter_3d_algo.execute() print( "output_image:", str( mean_filter_3d_algo.output_image ) );
ImageView foam = Data.ReadVipImage( @"Data/images/foam.vip" ); MeanFilter3d meanFilter3dAlgo = new MeanFilter3d { inputImage = foam, kernelShape = MeanFilter3d.KernelShape.CUBE, kernelRadius = 3 }; meanFilter3dAlgo.Execute(); Console.WriteLine( "outputImage:" + meanFilter3dAlgo.outputImage.ToString() );
Function Examples
auto foam = readVipImage( std::string( IMAGEDEVDATA_IMAGES_FOLDER ) + "foam.vip" ); auto result = meanFilter3d( foam, MeanFilter3d::KernelShape::CUBE, 3 ); std::cout << "outputImage:" << result->toString();
foam = imagedev.read_vip_image(imagedev_data.get_image_path("foam.vip")) result = imagedev.mean_filter_3d( foam, imagedev.MeanFilter3d.CUBE, 3 ) print( "output_image:", str( result ) );
ImageView foam = Data.ReadVipImage( @"Data/images/foam.vip" ); IOLink.ImageView result = Processing.MeanFilter3d( foam, MeanFilter3d.KernelShape.CUBE, 3 ); Console.WriteLine( "outputImage:" + result.ToString() );