HMinima
Merges the regional minima in a grayscale image and marks them in a binary image.
Access to parameter description
This command is deprecated, it will be removed in ImageDev 2024.2.
You can use HExtrema2d or HExtrema3d instead.
For an introduction:
The input is added to the contrast coefficient $h$, then a grayscale reconstruction is performed on the result of this addition.
The regional minima of the reconstructed image are called the h-minima.
The algorithm only works with homogeneous gray level objects. The appropriate $h$ value depends on the local contrast between the gray level objects to detect. Increasing this factor too much may eliminate some previously merged objects.
This algorithm is useful for filtering noisy minima sets.
It also can be used as particle markers in various algorithms; for example, watershed detection.
Reference:
P. Soille, Morphological Image Analysis. Principles and Applications, Second Edition, Springer-Verlag, Berlin, pp.203-204, 2003.
See also
Access to parameter description
This command is deprecated, it will be removed in ImageDev 2024.2.
You can use HExtrema2d or HExtrema3d instead.
For an introduction:
- section Mathematical Morphology
- section Geodesic Transformations
The input is added to the contrast coefficient $h$, then a grayscale reconstruction is performed on the result of this addition.
The regional minima of the reconstructed image are called the h-minima.
The algorithm only works with homogeneous gray level objects. The appropriate $h$ value depends on the local contrast between the gray level objects to detect. Increasing this factor too much may eliminate some previously merged objects.
This algorithm is useful for filtering noisy minima sets.
It also can be used as particle markers in various algorithms; for example, watershed detection.
Reference:
P. Soille, Morphological Image Analysis. Principles and Applications, Second Edition, Springer-Verlag, Berlin, pp.203-204, 2003.
See also
Function Syntax
This function returns outputBinaryImage.
// Function prototype
std::shared_ptr< iolink::ImageView > hMinima( std::shared_ptr< iolink::ImageView > inputImage, int32_t contrast, HMinima::Neighborhood neighborhood, std::shared_ptr< iolink::ImageView > outputBinaryImage = nullptr );
This function returns outputBinaryImage.
// Function prototype. h_minima(input_image: idt.ImageType, contrast: int = 4, neighborhood: HMinima.Neighborhood = HMinima.Neighborhood.CONNECTIVITY_26, output_binary_image: idt.ImageType = None) -> idt.ImageType
This function returns outputBinaryImage.
// Function prototype. public static IOLink.ImageView HMinima( IOLink.ImageView inputImage, Int32 contrast = 4, HMinima.Neighborhood neighborhood = ImageDev.HMinima.Neighborhood.CONNECTIVITY_26, IOLink.ImageView outputBinaryImage = null );
Class Syntax
Parameters
Parameter Name | Description | Type | Supported Values | Default Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
inputImage |
The grayscale input image. | Image | Grayscale | nullptr | |||||||
contrast |
The contrast level h. | Int32 | Any value | 4 | |||||||
neighborhood |
The 3D neighborhood configuration. This parameter is ignored with a 2D input image.
|
Enumeration | CONNECTIVITY_26 | ||||||||
outputBinaryImage |
The binary output image. Its dimensions and type are forced to the same values as the input. | Image | nullptr |
Parameter Name | Description | Type | Supported Values | Default Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
input_image |
The grayscale input image. | image | Grayscale | None | |||||||
contrast |
The contrast level h. | int32 | Any value | 4 | |||||||
neighborhood |
The 3D neighborhood configuration. This parameter is ignored with a 2D input image.
|
enumeration | CONNECTIVITY_26 | ||||||||
output_binary_image |
The binary output image. Its dimensions and type are forced to the same values as the input. | image | None |
Parameter Name | Description | Type | Supported Values | Default Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
inputImage |
The grayscale input image. | Image | Grayscale | null | |||||||
contrast |
The contrast level h. | Int32 | Any value | 4 | |||||||
neighborhood |
The 3D neighborhood configuration. This parameter is ignored with a 2D input image.
|
Enumeration | CONNECTIVITY_26 | ||||||||
outputBinaryImage |
The binary output image. Its dimensions and type are forced to the same values as the input. | Image | null |
Object Examples
auto foam = readVipImage( std::string( IMAGEDEVDATA_IMAGES_FOLDER ) + "foam.vip" ); HMinima hMinimaAlgo; hMinimaAlgo.setInputImage( foam ); hMinimaAlgo.setContrast( 4 ); hMinimaAlgo.setNeighborhood( HMinima::Neighborhood::CONNECTIVITY_26 ); hMinimaAlgo.execute(); std::cout << "outputBinaryImage:" << hMinimaAlgo.outputBinaryImage()->toString();
foam = imagedev.read_vip_image(imagedev_data.get_image_path("foam.vip")) h_minima_algo = imagedev.HMinima() h_minima_algo.input_image = foam h_minima_algo.contrast = 4 h_minima_algo.neighborhood = imagedev.HMinima.CONNECTIVITY_26 h_minima_algo.execute() print("output_binary_image:", str(h_minima_algo.output_binary_image))
ImageView foam = Data.ReadVipImage( @"Data/images/foam.vip" ); HMinima hMinimaAlgo = new HMinima { inputImage = foam, contrast = 4, neighborhood = HMinima.Neighborhood.CONNECTIVITY_26 }; hMinimaAlgo.Execute(); Console.WriteLine( "outputBinaryImage:" + hMinimaAlgo.outputBinaryImage.ToString() );
Function Examples
auto foam = readVipImage( std::string( IMAGEDEVDATA_IMAGES_FOLDER ) + "foam.vip" ); auto result = hMinima( foam, 4, HMinima::Neighborhood::CONNECTIVITY_26 ); std::cout << "outputBinaryImage:" << result->toString();
foam = imagedev.read_vip_image(imagedev_data.get_image_path("foam.vip")) result = imagedev.h_minima(foam, 4, imagedev.HMinima.CONNECTIVITY_26) print("output_binary_image:", str(result))
ImageView foam = Data.ReadVipImage( @"Data/images/foam.vip" ); IOLink.ImageView result = Processing.HMinima( foam, 4, HMinima.Neighborhood.CONNECTIVITY_26 ); Console.WriteLine( "outputBinaryImage:" + result.ToString() );