FeatureAdaptiveThresholding
Thresholds an image depending on two grayscale measurements.
Access to parameter description
This algorithm computes the thresholds of a grayscale image, given a label image corresponding to the pre-segmentation of the original image. Instead of giving two fixed values for the thresholding, two representative measurements are provided to the algorithm (for example, the 10th and the 90th percentile of the histogram, native measurements HistogramQuantile10 and HistogramQuantile90).
The minimum and maximum thresholding values are dynamically computed for each label and applied to give an adaptive thresholding on each of them.
For instance, the label image can be a grid of contiguous squares of different intensity to ensure a thresholding locally adapted to each square.
See also
Access to parameter description
This algorithm computes the thresholds of a grayscale image, given a label image corresponding to the pre-segmentation of the original image. Instead of giving two fixed values for the thresholding, two representative measurements are provided to the algorithm (for example, the 10th and the 90th percentile of the histogram, native measurements HistogramQuantile10 and HistogramQuantile90).
The minimum and maximum thresholding values are dynamically computed for each label and applied to give an adaptive thresholding on each of them.
For instance, the label image can be a grid of contiguous squares of different intensity to ensure a thresholding locally adapted to each square.
See also
Function Syntax
This function returns outputBinaryImage.
// Function prototype
std::shared_ptr< iolink::ImageView > featureAdaptiveThresholding( std::shared_ptr< iolink::ImageView > inputLabelImage, std::shared_ptr< iolink::ImageView > inputGrayImage, std::string measurementLow, std::string measurementHigh, std::shared_ptr< iolink::ImageView > outputBinaryImage = nullptr );
This function returns outputBinaryImage.
// Function prototype. feature_adaptive_thresholding(input_label_image: idt.ImageType, input_gray_image: idt.ImageType, measurement_low: str = "", measurement_high: str = "", output_binary_image: idt.ImageType = None) -> idt.ImageType
This function returns outputBinaryImage.
// Function prototype. public static IOLink.ImageView FeatureAdaptiveThresholding( IOLink.ImageView inputLabelImage, IOLink.ImageView inputGrayImage, string measurementLow = "", string measurementHigh = "", IOLink.ImageView outputBinaryImage = null );
Class Syntax
Parameters
Parameter Name | Description | Type | Supported Values | Default Value | |
---|---|---|---|---|---|
inputLabelImage |
The input label image. | Image | Binary or Label | nullptr | |
inputGrayImage |
The input grayscale image. This image must have same dimensions as the input label image. | Image | Grayscale | nullptr | |
measurementLow |
The measurement defining the lower threshold. | Measurement | "" | ||
measurementHigh |
The measurement defining the higher threshold. | Measurement | "" | ||
outputBinaryImage |
The output binary image. Its dimensions are forced to the same values as the input. | Image | nullptr |
Parameter Name | Description | Type | Supported Values | Default Value | |
---|---|---|---|---|---|
input_label_image |
The input label image. | image | Binary or Label | None | |
input_gray_image |
The input grayscale image. This image must have same dimensions as the input label image. | image | Grayscale | None | |
measurement_low |
The measurement defining the lower threshold. | measurement | "" | ||
measurement_high |
The measurement defining the higher threshold. | measurement | "" | ||
output_binary_image |
The output binary image. Its dimensions are forced to the same values as the input. | image | None |
Parameter Name | Description | Type | Supported Values | Default Value | |
---|---|---|---|---|---|
inputLabelImage |
The input label image. | Image | Binary or Label | null | |
inputGrayImage |
The input grayscale image. This image must have same dimensions as the input label image. | Image | Grayscale | null | |
measurementLow |
The measurement defining the lower threshold. | Measurement | "" | ||
measurementHigh |
The measurement defining the higher threshold. | Measurement | "" | ||
outputBinaryImage |
The output binary image. Its dimensions are forced to the same values as the input. | Image | null |
Object Examples
auto polystyrene_sep_label = readVipImage( std::string( IMAGEDEVDATA_IMAGES_FOLDER ) + "polystyrene_sep_label.vip" ); auto polystyrene = ioformat::readImage( std::string( IMAGEDEVDATA_IMAGES_FOLDER ) + "polystyrene.tif" ); FeatureAdaptiveThresholding featureAdaptiveThresholdingAlgo; featureAdaptiveThresholdingAlgo.setInputLabelImage( polystyrene_sep_label ); featureAdaptiveThresholdingAlgo.setInputGrayImage( polystyrene ); featureAdaptiveThresholdingAlgo.setMeasurementLow( "HistogramQuantile10" ); featureAdaptiveThresholdingAlgo.setMeasurementHigh( "HistogramQuantile90" ); featureAdaptiveThresholdingAlgo.execute(); std::cout << "outputBinaryImage:" << featureAdaptiveThresholdingAlgo.outputBinaryImage()->toString();
polystyrene_sep_label = imagedev.read_vip_image(imagedev_data.get_image_path("polystyrene_sep_label.vip")) polystyrene = ioformat.read_image(imagedev_data.get_image_path("polystyrene.tif")) feature_adaptive_thresholding_algo = imagedev.FeatureAdaptiveThresholding() feature_adaptive_thresholding_algo.input_label_image = polystyrene_sep_label feature_adaptive_thresholding_algo.input_gray_image = polystyrene feature_adaptive_thresholding_algo.measurement_low = "HistogramQuantile10" feature_adaptive_thresholding_algo.measurement_high = "HistogramQuantile90" feature_adaptive_thresholding_algo.execute() print("output_binary_image:", str(feature_adaptive_thresholding_algo.output_binary_image))
ImageView polystyrene_sep_label = Data.ReadVipImage( @"Data/images/polystyrene_sep_label.vip" ); ImageView polystyrene = ViewIO.ReadImage( @"Data/images/polystyrene.tif" ); FeatureAdaptiveThresholding featureAdaptiveThresholdingAlgo = new FeatureAdaptiveThresholding { inputLabelImage = polystyrene_sep_label, inputGrayImage = polystyrene, measurementLow = "HistogramQuantile10", measurementHigh = "HistogramQuantile90" }; featureAdaptiveThresholdingAlgo.Execute(); Console.WriteLine( "outputBinaryImage:" + featureAdaptiveThresholdingAlgo.outputBinaryImage.ToString() );
Function Examples
auto polystyrene_sep_label = readVipImage( std::string( IMAGEDEVDATA_IMAGES_FOLDER ) + "polystyrene_sep_label.vip" ); auto polystyrene = ioformat::readImage( std::string( IMAGEDEVDATA_IMAGES_FOLDER ) + "polystyrene.tif" ); auto result = featureAdaptiveThresholding( polystyrene_sep_label, polystyrene, "HistogramQuantile10", "HistogramQuantile90" ); std::cout << "outputBinaryImage:" << result->toString();
polystyrene_sep_label = imagedev.read_vip_image(imagedev_data.get_image_path("polystyrene_sep_label.vip")) polystyrene = ioformat.read_image(imagedev_data.get_image_path("polystyrene.tif")) result = imagedev.feature_adaptive_thresholding(polystyrene_sep_label, polystyrene, "HistogramQuantile10", "HistogramQuantile90") print("output_binary_image:", str(result))
ImageView polystyrene_sep_label = Data.ReadVipImage( @"Data/images/polystyrene_sep_label.vip" ); ImageView polystyrene = ViewIO.ReadImage( @"Data/images/polystyrene.tif" ); IOLink.ImageView result = Processing.FeatureAdaptiveThresholding( polystyrene_sep_label, polystyrene, "HistogramQuantile10", "HistogramQuantile90" ); Console.WriteLine( "outputBinaryImage:" + result.ToString() );