GaussianDerivative2d
Approximates the convolution of a two-dimensional image with a Gaussian kernel or its derivative.
Access to parameter description
This algorithm independently applies, on each axis, an approximation of:
Using this mode, the computation time is independent of the standard deviation.
Reference
R.Deriche. "Fast algorithms for low-level vision". IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, no 1, pp. 78-87, Jan. 1990.
See also
Access to parameter description
This algorithm independently applies, on each axis, an approximation of:
- a Gaussian filter
- the derivative of a Gaussian filter
- the second derivative of a Gaussian filter
Using this mode, the computation time is independent of the standard deviation.
Reference
R.Deriche. "Fast algorithms for low-level vision". IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.12, no 1, pp. 78-87, Jan. 1990.
See also
Function Syntax
This function returns outputImage.
// Function prototype
std::shared_ptr< iolink::ImageView > gaussianDerivative2d( std::shared_ptr< iolink::ImageView > inputImage, iolink::Vector2i32 orderDerivative, iolink::Vector2d standardDeviation, std::shared_ptr< iolink::ImageView > outputImage = nullptr );
This function returns outputImage.
// Function prototype. gaussian_derivative_2d(input_image: idt.ImageType, order_derivative: Iterable[int] = [0, 0], standard_deviation: Union[Iterable[int], Iterable[float]] = [1, 1], output_image: idt.ImageType = None) -> idt.ImageType
This function returns outputImage.
// Function prototype. public static IOLink.ImageView GaussianDerivative2d( IOLink.ImageView inputImage, int[] orderDerivative = null, double[] standardDeviation = null, IOLink.ImageView outputImage = null );
Class Syntax
Parameters
Parameter Name | Description | Type | Supported Values | Default Value | |
---|---|---|---|---|---|
inputImage |
The input image. | Image | Binary, Label, Grayscale or Multispectral | nullptr | |
standardDeviation |
The sigma value of the Gaussian filter for each direction X and Y. Each value must be greater than or equal to 0.1. | Vector2d | >=0.1 | {1.f, 1.f} | |
orderDerivative |
The derivation order for each direction X and Y. Each value must be 0, 1 or 2. | Vector2i32 | [0, 2] | {0, 0} | |
outputImage |
The output image. Its dimensions, calibration and interpretation are forced to the same values as the input image. Its type is forced to float. | Image | nullptr |
Parameter Name | Description | Type | Supported Values | Default Value | |
---|---|---|---|---|---|
input_image |
The input image. | image | Binary, Label, Grayscale or Multispectral | None | |
standard_deviation |
The sigma value of the Gaussian filter for each direction X and Y. Each value must be greater than or equal to 0.1. | vector2d | >=0.1 | [1, 1] | |
order_derivative |
The derivation order for each direction X and Y. Each value must be 0, 1 or 2. | vector2i32 | [0, 2] | [0, 0] | |
output_image |
The output image. Its dimensions, calibration and interpretation are forced to the same values as the input image. Its type is forced to float. | image | None |
Parameter Name | Description | Type | Supported Values | Default Value | |
---|---|---|---|---|---|
inputImage |
The input image. | Image | Binary, Label, Grayscale or Multispectral | null | |
standardDeviation |
The sigma value of the Gaussian filter for each direction X and Y. Each value must be greater than or equal to 0.1. | Vector2d | >=0.1 | {1f, 1f} | |
orderDerivative |
The derivation order for each direction X and Y. Each value must be 0, 1 or 2. | Vector2i32 | [0, 2] | {0, 0} | |
outputImage |
The output image. Its dimensions, calibration and interpretation are forced to the same values as the input image. Its type is forced to float. | Image | null |
Object Examples
auto polystyrene = ioformat::readImage( std::string( IMAGEDEVDATA_IMAGES_FOLDER ) + "polystyrene.tif" ); GaussianDerivative2d gaussianDerivative2dAlgo; gaussianDerivative2dAlgo.setInputImage( polystyrene ); gaussianDerivative2dAlgo.setOrderDerivative( {0, 0} ); gaussianDerivative2dAlgo.setStandardDeviation( {1.0, 1.0} ); gaussianDerivative2dAlgo.execute(); std::cout << "outputImage:" << gaussianDerivative2dAlgo.outputImage()->toString();
polystyrene = ioformat.read_image(imagedev_data.get_image_path("polystyrene.tif")) gaussian_derivative_2d_algo = imagedev.GaussianDerivative2d() gaussian_derivative_2d_algo.input_image = polystyrene gaussian_derivative_2d_algo.order_derivative = [0, 0] gaussian_derivative_2d_algo.standard_deviation = [1.0, 1.0] gaussian_derivative_2d_algo.execute() print("output_image:", str(gaussian_derivative_2d_algo.output_image))
ImageView polystyrene = ViewIO.ReadImage( @"Data/images/polystyrene.tif" ); GaussianDerivative2d gaussianDerivative2dAlgo = new GaussianDerivative2d { inputImage = polystyrene, orderDerivative = new int[]{0, 0}, standardDeviation = new double[]{1.0, 1.0} }; gaussianDerivative2dAlgo.Execute(); Console.WriteLine( "outputImage:" + gaussianDerivative2dAlgo.outputImage.ToString() );
Function Examples
auto polystyrene = ioformat::readImage( std::string( IMAGEDEVDATA_IMAGES_FOLDER ) + "polystyrene.tif" ); auto result = gaussianDerivative2d( polystyrene, {0, 0}, {1.0, 1.0} ); std::cout << "outputImage:" << result->toString();
polystyrene = ioformat.read_image(imagedev_data.get_image_path("polystyrene.tif")) result = imagedev.gaussian_derivative_2d(polystyrene, [0, 0], [1.0, 1.0]) print("output_image:", str(result))
ImageView polystyrene = ViewIO.ReadImage( @"Data/images/polystyrene.tif" ); IOLink.ImageView result = Processing.GaussianDerivative2d( polystyrene, new int[]{0, 0}, new double[]{1.0, 1.0} ); Console.WriteLine( "outputImage:" + result.ToString() );