HExtrema3d
Detects and merges the local maxima or minima of a three-dimensional grayscale image and marks them in a binary image.
Access to parameter description
For an introduction:
In case of local maxima detection, the input is subtracted from the contrast coefficient $h$, then a grayscale reconstruction by dilation is performed on the result of this subtraction.
The regional maxima of the reconstructed image are called the h-maxima.
For detecting local minima, the input is added to the contrast coefficient $h$, then a grayscale reconstruction by erosion is performed with the result of this addition as marker image.
The regional minima of the reconstructed image are called the h-minima.
This algorithm only works with homogeneous gray level objects. The appropriate $h$ value depends on the local contrast between the gray level objects to detect. Increasing this factor too much may eliminate some previously merged objects.
This algorithm is useful for filtering noisy maxima or minima sets.
It also can be used as particle markers in various algorithms; for example, watershed detection.
Reference:
P. Soille, Morphological Image Analysis. Principles and Applications, Second Edition, Springer-Verlag, Berlin, pp.203-204, 2003.
See also
Access to parameter description
For an introduction:
- section Mathematical Morphology
- section Geodesic Transformations
In case of local maxima detection, the input is subtracted from the contrast coefficient $h$, then a grayscale reconstruction by dilation is performed on the result of this subtraction.
The regional maxima of the reconstructed image are called the h-maxima.
For detecting local minima, the input is added to the contrast coefficient $h$, then a grayscale reconstruction by erosion is performed with the result of this addition as marker image.
The regional minima of the reconstructed image are called the h-minima.
This algorithm only works with homogeneous gray level objects. The appropriate $h$ value depends on the local contrast between the gray level objects to detect. Increasing this factor too much may eliminate some previously merged objects.
This algorithm is useful for filtering noisy maxima or minima sets.
It also can be used as particle markers in various algorithms; for example, watershed detection.
Reference:
P. Soille, Morphological Image Analysis. Principles and Applications, Second Edition, Springer-Verlag, Berlin, pp.203-204, 2003.
See also
Function Syntax
This function returns outputBinaryImage.
// Function prototype
std::shared_ptr< iolink::ImageView > hExtrema3d( std::shared_ptr< iolink::ImageView > inputImage, HExtrema3d::ExtremaType extremaType, uint32_t contrast, HExtrema3d::Neighborhood neighborhood, std::shared_ptr< iolink::ImageView > outputBinaryImage = nullptr );
This function returns outputBinaryImage.
// Function prototype. h_extrema_3d(input_image: idt.ImageType, extrema_type: HExtrema3d.ExtremaType = HExtrema3d.ExtremaType.MAXIMA, contrast: int = 4, neighborhood: HExtrema3d.Neighborhood = HExtrema3d.Neighborhood.CONNECTIVITY_26, output_binary_image: idt.ImageType = None) -> idt.ImageType
This function returns outputBinaryImage.
// Function prototype. public static IOLink.ImageView HExtrema3d( IOLink.ImageView inputImage, HExtrema3d.ExtremaType extremaType = ImageDev.HExtrema3d.ExtremaType.MAXIMA, UInt32 contrast = 4, HExtrema3d.Neighborhood neighborhood = ImageDev.HExtrema3d.Neighborhood.CONNECTIVITY_26, IOLink.ImageView outputBinaryImage = null );
Class Syntax
Parameters
Parameter Name | Description | Type | Supported Values | Default Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
inputImage |
The input grayscale image. | Image | Grayscale | nullptr | |||||||
extremaType |
The type of extrema to detect.
|
Enumeration | MAXIMA | ||||||||
contrast |
The contrast level h. | UInt32 | Any value | 4 | |||||||
neighborhood |
The 3D neighborhood configuration used for the morphological operations.
|
Enumeration | CONNECTIVITY_26 | ||||||||
outputBinaryImage |
The output binary image. Its dimensions are forced to the same values as the input. | Image | nullptr |
Parameter Name | Description | Type | Supported Values | Default Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
input_image |
The input grayscale image. | image | Grayscale | None | |||||||
extrema_type |
The type of extrema to detect.
|
enumeration | MAXIMA | ||||||||
contrast |
The contrast level h. | uint32 | Any value | 4 | |||||||
neighborhood |
The 3D neighborhood configuration used for the morphological operations.
|
enumeration | CONNECTIVITY_26 | ||||||||
output_binary_image |
The output binary image. Its dimensions are forced to the same values as the input. | image | None |
Parameter Name | Description | Type | Supported Values | Default Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
inputImage |
The input grayscale image. | Image | Grayscale | null | |||||||
extremaType |
The type of extrema to detect.
|
Enumeration | MAXIMA | ||||||||
contrast |
The contrast level h. | UInt32 | Any value | 4 | |||||||
neighborhood |
The 3D neighborhood configuration used for the morphological operations.
|
Enumeration | CONNECTIVITY_26 | ||||||||
outputBinaryImage |
The output binary image. Its dimensions are forced to the same values as the input. | Image | null |
Object Examples
auto foam = readVipImage( std::string( IMAGEDEVDATA_IMAGES_FOLDER ) + "foam.vip" ); HExtrema3d hExtrema3dAlgo; hExtrema3dAlgo.setInputImage( foam ); hExtrema3dAlgo.setExtremaType( HExtrema3d::ExtremaType::MAXIMA ); hExtrema3dAlgo.setContrast( 4 ); hExtrema3dAlgo.setNeighborhood( HExtrema3d::Neighborhood::CONNECTIVITY_26 ); hExtrema3dAlgo.execute(); std::cout << "outputBinaryImage:" << hExtrema3dAlgo.outputBinaryImage()->toString();
foam = imagedev.read_vip_image(imagedev_data.get_image_path("foam.vip")) h_extrema_3d_algo = imagedev.HExtrema3d() h_extrema_3d_algo.input_image = foam h_extrema_3d_algo.extrema_type = imagedev.HExtrema3d.MAXIMA h_extrema_3d_algo.contrast = 4 h_extrema_3d_algo.neighborhood = imagedev.HExtrema3d.CONNECTIVITY_26 h_extrema_3d_algo.execute() print("output_binary_image:", str(h_extrema_3d_algo.output_binary_image))
ImageView foam = Data.ReadVipImage( @"Data/images/foam.vip" ); HExtrema3d hExtrema3dAlgo = new HExtrema3d { inputImage = foam, extremaType = HExtrema3d.ExtremaType.MAXIMA, contrast = 4, neighborhood = HExtrema3d.Neighborhood.CONNECTIVITY_26 }; hExtrema3dAlgo.Execute(); Console.WriteLine( "outputBinaryImage:" + hExtrema3dAlgo.outputBinaryImage.ToString() );
Function Examples
auto foam = readVipImage( std::string( IMAGEDEVDATA_IMAGES_FOLDER ) + "foam.vip" ); auto result = hExtrema3d( foam, HExtrema3d::ExtremaType::MAXIMA, 4, HExtrema3d::Neighborhood::CONNECTIVITY_26 ); std::cout << "outputBinaryImage:" << result->toString();
foam = imagedev.read_vip_image(imagedev_data.get_image_path("foam.vip")) result = imagedev.h_extrema_3d(foam, imagedev.HExtrema3d.MAXIMA, 4, imagedev.HExtrema3d.CONNECTIVITY_26) print("output_binary_image:", str(result))
ImageView foam = Data.ReadVipImage( @"Data/images/foam.vip" ); IOLink.ImageView result = Processing.HExtrema3d( foam, HExtrema3d.ExtremaType.MAXIMA, 4, HExtrema3d.Neighborhood.CONNECTIVITY_26 ); Console.WriteLine( "outputBinaryImage:" + result.ToString() );