GradientVector3d
Provides different algorithms to perform an edge detection based on the first derivative of a three-dimensional image.
Access to parameter description
For an introduction:
The following algorithms are proposed to extract the edges of an image:
See also
Access to parameter description
For an introduction:
- section Edge Detection
- section Gradient
- section Images Filters
The following algorithms are proposed to extract the edges of an image:
- Gaussian: It performs a convolution with the derivatives of a Gaussian function along each image axis.
- Sobel: It performs a convolution with the normalized Sobel Kernel.
- Prewitt: It performs a convolution with the normalized Prewitt Kernel:
See also
Function Syntax
This function returns a GradientVector3dOutput structure containing outputImageX, outputImageY and outputImageZ.
// Output structure of the gradientVector3d function. struct GradientVector3dOutput { /// The gradient output image in X direction. std::shared_ptr< iolink::ImageView > outputImageX; /// The gradient output image in Y direction. std::shared_ptr< iolink::ImageView > outputImageY; /// The gradient output image in Z direction. std::shared_ptr< iolink::ImageView > outputImageZ; }; // Function prototype
GradientVector3dOutput gradientVector3d( std::shared_ptr< iolink::ImageView > inputImage, GradientVector3d::GradientOperator gradientOperator, iolink::Vector3d standardDeviation, GradientVector3d::FilterMode filterMode, GradientVector3d::OutputType outputType, std::shared_ptr< iolink::ImageView > outputImageX = nullptr, std::shared_ptr< iolink::ImageView > outputImageY = nullptr, std::shared_ptr< iolink::ImageView > outputImageZ = nullptr );
This function returns a tuple containing output_image_x, output_image_y and output_image_z.
// Function prototype. gradient_vector_3d(input_image: idt.ImageType, gradient_operator: GradientVector3d.GradientOperator = GradientVector3d.GradientOperator.GAUSSIAN, standard_deviation: Union[Iterable[int], Iterable[float]] = [1, 1, 1], filter_mode: GradientVector3d.FilterMode = GradientVector3d.FilterMode.RECURSIVE, output_type: GradientVector3d.OutputType = GradientVector3d.OutputType.FLOAT_32_BIT, output_image_x: idt.ImageType = None, output_image_y: idt.ImageType = None, output_image_z: idt.ImageType = None) -> Tuple[idt.ImageType, idt.ImageType, idt.ImageType]
This function returns a GradientVector3dOutput structure containing outputImageX, outputImageY and outputImageZ.
/// Output structure of the GradientVector3d function. public struct GradientVector3dOutput { /// The gradient output image in X direction. public IOLink.ImageView outputImageX; /// The gradient output image in Y direction. public IOLink.ImageView outputImageY; /// The gradient output image in Z direction. public IOLink.ImageView outputImageZ; }; // Function prototype. public static GradientVector3dOutput GradientVector3d( IOLink.ImageView inputImage, GradientVector3d.GradientOperator gradientOperator = ImageDev.GradientVector3d.GradientOperator.GAUSSIAN, double[] standardDeviation = null, GradientVector3d.FilterMode filterMode = ImageDev.GradientVector3d.FilterMode.RECURSIVE, GradientVector3d.OutputType outputType = ImageDev.GradientVector3d.OutputType.FLOAT_32_BIT, IOLink.ImageView outputImageX = null, IOLink.ImageView outputImageY = null, IOLink.ImageView outputImageZ = null );
Class Syntax
Parameters
Parameter Name | Description | Type | Supported Values | Default Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
inputImage |
The input image. | Image | Binary, Label, Grayscale or Multispectral | nullptr | |||||||||
gradientOperator |
The gradient operator to apply.
|
Enumeration | GAUSSIAN | ||||||||||
standardDeviation |
The standard deviation of the gaussian operator defines the gradient sharpness. Low values provide sharp gradient.
This parameter is ignored with the Sobel and Prewitt gradient operators. |
Vector3d | >=0.1 | {1.f, 1.f, 1.f} | |||||||||
filterMode |
The gradient operator to apply.
|
Enumeration | RECURSIVE | ||||||||||
outputType |
The output image type to provide.
|
Enumeration | FLOAT_32_BIT | ||||||||||
outputImageX |
The gradient output image in X direction.
Dimensions, calibration, and interpretation of the output image are forced to the same values as the input. |
Image | nullptr | ||||||||||
outputImageY |
The gradient output image in Y direction.
Dimensions, calibration, and interpretation of the output image are forced to the same values as the input. |
Image | nullptr | ||||||||||
outputImageZ |
The gradient output image in Z direction.
Dimensions, calibration, and interpretation of the output image are forced to the same values as the input. |
Image | nullptr |
Parameter Name | Description | Type | Supported Values | Default Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
input_image |
The input image. | image | Binary, Label, Grayscale or Multispectral | None | |||||||||
gradient_operator |
The gradient operator to apply.
|
enumeration | GAUSSIAN | ||||||||||
standard_deviation |
The standard deviation of the gaussian operator defines the gradient sharpness. Low values provide sharp gradient.
This parameter is ignored with the Sobel and Prewitt gradient operators. |
vector3d | >=0.1 | [1, 1, 1] | |||||||||
filter_mode |
The gradient operator to apply.
|
enumeration | RECURSIVE | ||||||||||
output_type |
The output image type to provide.
|
enumeration | FLOAT_32_BIT | ||||||||||
output_image_x |
The gradient output image in X direction.
Dimensions, calibration, and interpretation of the output image are forced to the same values as the input. |
image | None | ||||||||||
output_image_y |
The gradient output image in Y direction.
Dimensions, calibration, and interpretation of the output image are forced to the same values as the input. |
image | None | ||||||||||
output_image_z |
The gradient output image in Z direction.
Dimensions, calibration, and interpretation of the output image are forced to the same values as the input. |
image | None |
Parameter Name | Description | Type | Supported Values | Default Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
inputImage |
The input image. | Image | Binary, Label, Grayscale or Multispectral | null | |||||||||
gradientOperator |
The gradient operator to apply.
|
Enumeration | GAUSSIAN | ||||||||||
standardDeviation |
The standard deviation of the gaussian operator defines the gradient sharpness. Low values provide sharp gradient.
This parameter is ignored with the Sobel and Prewitt gradient operators. |
Vector3d | >=0.1 | {1f, 1f, 1f} | |||||||||
filterMode |
The gradient operator to apply.
|
Enumeration | RECURSIVE | ||||||||||
outputType |
The output image type to provide.
|
Enumeration | FLOAT_32_BIT | ||||||||||
outputImageX |
The gradient output image in X direction.
Dimensions, calibration, and interpretation of the output image are forced to the same values as the input. |
Image | null | ||||||||||
outputImageY |
The gradient output image in Y direction.
Dimensions, calibration, and interpretation of the output image are forced to the same values as the input. |
Image | null | ||||||||||
outputImageZ |
The gradient output image in Z direction.
Dimensions, calibration, and interpretation of the output image are forced to the same values as the input. |
Image | null |
Object Examples
auto polystyrene = ioformat::readImage( std::string( IMAGEDEVDATA_IMAGES_FOLDER ) + "polystyrene.tif" ); GradientVector3d gradientVector3dAlgo; gradientVector3dAlgo.setInputImage( polystyrene ); gradientVector3dAlgo.setGradientOperator( GradientVector3d::GradientOperator::GAUSSIAN ); gradientVector3dAlgo.setStandardDeviation( {1, 1, 1} ); gradientVector3dAlgo.setFilterMode( GradientVector3d::FilterMode::RECURSIVE ); gradientVector3dAlgo.setOutputType( GradientVector3d::OutputType::FLOAT_32_BIT ); gradientVector3dAlgo.execute(); std::cout << "outputImageX:" << gradientVector3dAlgo.outputImageX()->toString(); std::cout << "outputImageY:" << gradientVector3dAlgo.outputImageY()->toString(); std::cout << "outputImageZ:" << gradientVector3dAlgo.outputImageZ()->toString();
polystyrene = ioformat.read_image(imagedev_data.get_image_path("polystyrene.tif")) gradient_vector_3d_algo = imagedev.GradientVector3d() gradient_vector_3d_algo.input_image = polystyrene gradient_vector_3d_algo.gradient_operator = imagedev.GradientVector3d.GAUSSIAN gradient_vector_3d_algo.standard_deviation = [1, 1, 1] gradient_vector_3d_algo.filter_mode = imagedev.GradientVector3d.RECURSIVE gradient_vector_3d_algo.output_type = imagedev.GradientVector3d.FLOAT_32_BIT gradient_vector_3d_algo.execute() print("output_image_x:", str(gradient_vector_3d_algo.output_image_x)) print("output_image_y:", str(gradient_vector_3d_algo.output_image_y)) print("output_image_z:", str(gradient_vector_3d_algo.output_image_z))
ImageView polystyrene = ViewIO.ReadImage( @"Data/images/polystyrene.tif" ); GradientVector3d gradientVector3dAlgo = new GradientVector3d { inputImage = polystyrene, gradientOperator = GradientVector3d.GradientOperator.GAUSSIAN, standardDeviation = new double[]{1, 1, 1}, filterMode = GradientVector3d.FilterMode.RECURSIVE, outputType = GradientVector3d.OutputType.FLOAT_32_BIT }; gradientVector3dAlgo.Execute(); Console.WriteLine( "outputImageX:" + gradientVector3dAlgo.outputImageX.ToString() ); Console.WriteLine( "outputImageY:" + gradientVector3dAlgo.outputImageY.ToString() ); Console.WriteLine( "outputImageZ:" + gradientVector3dAlgo.outputImageZ.ToString() );
Function Examples
auto polystyrene = ioformat::readImage( std::string( IMAGEDEVDATA_IMAGES_FOLDER ) + "polystyrene.tif" ); auto result = gradientVector3d( polystyrene, GradientVector3d::GradientOperator::GAUSSIAN, {1, 1, 1}, GradientVector3d::FilterMode::RECURSIVE, GradientVector3d::OutputType::FLOAT_32_BIT ); std::cout << "outputImageX:" << result.outputImageX->toString(); std::cout << "outputImageY:" << result.outputImageY->toString(); std::cout << "outputImageZ:" << result.outputImageZ->toString();
polystyrene = ioformat.read_image(imagedev_data.get_image_path("polystyrene.tif")) result_output_image_x, result_output_image_y, result_output_image_z = imagedev.gradient_vector_3d(polystyrene, imagedev.GradientVector3d.GAUSSIAN, [1, 1, 1], imagedev.GradientVector3d.RECURSIVE, imagedev.GradientVector3d.FLOAT_32_BIT) print("output_image_x:", str(result_output_image_x)) print("output_image_y:", str(result_output_image_y)) print("output_image_z:", str(result_output_image_z))
ImageView polystyrene = ViewIO.ReadImage( @"Data/images/polystyrene.tif" ); Processing.GradientVector3dOutput result = Processing.GradientVector3d( polystyrene, GradientVector3d.GradientOperator.GAUSSIAN, new double[]{1, 1, 1}, GradientVector3d.FilterMode.RECURSIVE, GradientVector3d.OutputType.FLOAT_32_BIT ); Console.WriteLine( "outputImageX:" + result.outputImageX.ToString() ); Console.WriteLine( "outputImageY:" + result.outputImageY.ToString() ); Console.WriteLine( "outputImageZ:" + result.outputImageZ.ToString() );