This algorithm can work on 3D, sequence, and spectral images.
Following the computation mode of the associated texture classification model (2D or 3D) initialized
with TextureClassificationCreate,
the input image can be considered as a series of 2D images or as a series of 3D images.
For all the labeled pixels of the training image, this algorithm extracts the texture features defined by the
groups selected in the texture classification model. These newly extracted features increase the training-set
and enrich the model.
Note: All the pixels within the analysis radius of a labeled pixel are considered for the feature
extraction. It means that the number of pixels used for training is greater than the number of the labeled
pixels.
// Command constructor.TextureClassificationTrain();/// Gets the inputImage parameter./// The input grayscale image.
std::shared_ptr< iolink::ImageView> inputImage()const;/// Sets the inputImage parameter./// The input grayscale image.void setInputImage( std::shared_ptr< iolink::ImageView> inputImage );/// Gets the inputTrainingImage parameter./// The input label image.
std::shared_ptr< iolink::ImageView> inputTrainingImage()const;/// Sets the inputTrainingImage parameter./// The input label image.void setInputTrainingImage( std::shared_ptr< iolink::ImageView> inputTrainingImage );/// Gets the minSeparationPercentage parameter./// This parameter controls the rejection criteria of the feature selection algorithm (FS).double minSeparationPercentage()const;/// Sets the minSeparationPercentage parameter./// This parameter controls the rejection criteria of the feature selection algorithm (FS).void setMinSeparationPercentage(constdouble& minSeparationPercentage );/// Gets the finalizeTraining parameter./// This parameter indicates whether the algorithm must finalize the training. This parameter must be set to true since the retraining is currently not allowed.bool finalizeTraining()const;/// Sets the finalizeTraining parameter./// This parameter indicates whether the algorithm must finalize the training. This parameter must be set to true since the retraining is currently not allowed.void setFinalizeTraining(constbool& finalizeTraining );/// Gets the inputOutputModel parameter./// The input and output texture classification model.TextureClassificationModel::Ptr inputOutputModel()const;/// Sets the inputOutputModel parameter./// The input and output texture classification model.void setInputOutputModel(TextureClassificationModel::Ptr inputOutputModel );// Method to launch the command.void execute();
# Property of the inputImage parameter.TextureClassificationTrain.input_image
# Property of the inputTrainingImage parameter.TextureClassificationTrain.input_training_image
# Property of the minSeparationPercentage parameter.TextureClassificationTrain.min_separation_percentage
# Property of the finalizeTraining parameter.TextureClassificationTrain.finalize_training
# Property of the inputOutputModel parameter.TextureClassificationTrain.input_output_model
// Method to launch the command.
execute()
// Command constructor.TextureClassificationTrain()// Property of the inputImage parameter.TextureClassificationTrain.inputImage
// Property of the inputTrainingImage parameter.TextureClassificationTrain.inputTrainingImage
// Property of the minSeparationPercentage parameter.TextureClassificationTrain.minSeparationPercentage
// Property of the finalizeTraining parameter.TextureClassificationTrain.finalizeTraining
// Property of the inputOutputModel parameter.TextureClassificationTrain.inputOutputModel
// Method to launch the command.Execute()
Parameters
Parameter Name
Description
Type
Supported Values
Default Value
inputImage
The input grayscale image.
Image
Grayscale
nullptr
inputTrainingImage
The input label image.
Each label represents a class sample for the training.
Image
Label
nullptr
minSeparationPercentage
This parameter controls the rejection criteria of the feature selection algorithm (FS).
A measure is rejected if its contribution does not increase the separation power of the
classification model enough. This ratio indicates the minimal relative growth required to keep a measure.
More information is available in the Feature Selection
section.
This value must be greater than or equal to 0.0.
Float64
[0, 100]
5
finalizeTraining
This parameter indicates whether the algorithm must finalize the training. This parameter must be set to true since the retraining is currently not allowed.
Bool
true
inputOutputModel
The input and output texture classification model.
The input label image.
Each label represents a class sample for the training.
image
Label
None
min_separation_percentage
This parameter controls the rejection criteria of the feature selection algorithm (FS).
A measure is rejected if its contribution does not increase the separation power of the
classification model enough. This ratio indicates the minimal relative growth required to keep a measure.
More information is available in the Feature Selection
section.
This value must be greater than or equal to 0.0.
float64
[0, 100]
5
finalize_training
This parameter indicates whether the algorithm must finalize the training. This parameter must be set to true since the retraining is currently not allowed.
bool
True
input_output_model
The input and output texture classification model.
The input label image.
Each label represents a class sample for the training.
Image
Label
null
minSeparationPercentage
This parameter controls the rejection criteria of the feature selection algorithm (FS).
A measure is rejected if its contribution does not increase the separation power of the
classification model enough. This ratio indicates the minimal relative growth required to keep a measure.
More information is available in the Feature Selection
section.
This value must be greater than or equal to 0.0.
Float64
[0, 100]
5
finalizeTraining
This parameter indicates whether the algorithm must finalize the training. This parameter must be set to true since the retraining is currently not allowed.
Bool
true
inputOutputModel
The input and output texture classification model.