Waterpixel
Computes an image of atomic regions that share common characteristics.
Access to parameter description
For an introduction:
Superpixels replace the rigid pixel structure by delineating regions that maintain meaning in the image, so the regions provide information about the structure of the scene, making other processing tasks simpler than using single image pixels.
The Waterpixel algorithm computes an image of binary borders or labeled regions associated to a grid of user-defined cell size. This grid is warped to fit the input image high intensities, generally representing edges. The warping is performed by applying a watershed on the input image. Markers used by the watershed are choosen as local minima close to the cell centers.
In order to ensure a regular size to the output superpixels, the input image is blended with the grid. A regularization factor is used to control the weight given to the grid relatively to the original intensities.
Figure 1. Superpixel generation with the waterpixel algorithm:(a) Input image given by a morphological gradient,
(b) waterpixels emphasizing the regular grid (high regularization factor), (c) waterpixels emphasizing the input image (low regularization factor)
Reference:
V. Machairas, E. Decenciere, T. Walter. "Waterpixels: Superpixels based on the watershed transformation". IEEE International Conference On Image Processing, Paris, France, Oct 2014.
See also
Access to parameter description
For an introduction:
- section Image Segmentation
Superpixels replace the rigid pixel structure by delineating regions that maintain meaning in the image, so the regions provide information about the structure of the scene, making other processing tasks simpler than using single image pixels.
The Waterpixel algorithm computes an image of binary borders or labeled regions associated to a grid of user-defined cell size. This grid is warped to fit the input image high intensities, generally representing edges. The warping is performed by applying a watershed on the input image. Markers used by the watershed are choosen as local minima close to the cell centers.
In order to ensure a regular size to the output superpixels, the input image is blended with the grid. A regularization factor is used to control the weight given to the grid relatively to the original intensities.
(a) |
(b) |
(c) |
(b) waterpixels emphasizing the regular grid (high regularization factor), (c) waterpixels emphasizing the input image (low regularization factor)
Reference:
V. Machairas, E. Decenciere, T. Walter. "Waterpixels: Superpixels based on the watershed transformation". IEEE International Conference On Image Processing, Paris, France, Oct 2014.
See also
Function Syntax
This function returns outputImage.
// Function prototype
std::shared_ptr< iolink::ImageView > waterpixel( std::shared_ptr< iolink::ImageView > inputImage, uint32_t cellSize, uint32_t factor, Waterpixel::AlgorithmMode algorithmMode, Waterpixel::OutputType outputType, std::shared_ptr< iolink::ImageView > outputImage = NULL );
This function returns outputImage.
// Function prototype. waterpixel( input_image, cell_size = 25, factor = 10, algorithm_mode = Waterpixel.AlgorithmMode.REPEATABLE, output_type = Waterpixel.OutputType.SEPARATED_REGIONS, output_image = None )
This function returns outputImage.
// Function prototype. public static IOLink.ImageView Waterpixel( IOLink.ImageView inputImage, UInt32 cellSize = 25, UInt32 factor = 10, Waterpixel.AlgorithmMode algorithmMode = ImageDev.Waterpixel.AlgorithmMode.REPEATABLE, Waterpixel.OutputType outputType = ImageDev.Waterpixel.OutputType.SEPARATED_REGIONS, IOLink.ImageView outputImage = null );
Class Syntax
Parameters
Parameter Name | Description | Type | Supported Values | Default Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
inputImage |
The input grayscale image highlighting object boundaries, generally a gradient image. | Image | Grayscale | nullptr | |||||||
cellSize |
The side size, in pixels, of the square cells used to generate superpixels. | UInt32 | >=3 | 25 | |||||||
factor |
The spatial regularization factor.
A low value makes the output superpixels fit on original intensities and generates irregular regions. A high value makes the output superpixels fit on cell boundaries. |
UInt32 | Any value | 10 | |||||||
outputType |
The type of output.
|
Enumeration | SEPARATED_REGIONS | ||||||||
algorithmMode |
The mode for applying the watershed algorithm.
|
Enumeration | REPEATABLE | ||||||||
outputImage |
The output binary or label image. Its dimensions are forced to the same values as the input image. Its type depends on the outputType parameter. | Image | nullptr |
Parameter Name | Description | Type | Supported Values | Default Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
input_image |
The input grayscale image highlighting object boundaries, generally a gradient image. | image | Grayscale | None | |||||||
cell_size |
The side size, in pixels, of the square cells used to generate superpixels. | uint32 | >=3 | 25 | |||||||
factor |
The spatial regularization factor.
A low value makes the output superpixels fit on original intensities and generates irregular regions. A high value makes the output superpixels fit on cell boundaries. |
uint32 | Any value | 10 | |||||||
output_type |
The type of output.
|
enumeration | SEPARATED_REGIONS | ||||||||
algorithm_mode |
The mode for applying the watershed algorithm.
|
enumeration | REPEATABLE | ||||||||
output_image |
The output binary or label image. Its dimensions are forced to the same values as the input image. Its type depends on the outputType parameter. | image | None |
Parameter Name | Description | Type | Supported Values | Default Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
inputImage |
The input grayscale image highlighting object boundaries, generally a gradient image. | Image | Grayscale | null | |||||||
cellSize |
The side size, in pixels, of the square cells used to generate superpixels. | UInt32 | >=3 | 25 | |||||||
factor |
The spatial regularization factor.
A low value makes the output superpixels fit on original intensities and generates irregular regions. A high value makes the output superpixels fit on cell boundaries. |
UInt32 | Any value | 10 | |||||||
outputType |
The type of output.
|
Enumeration | SEPARATED_REGIONS | ||||||||
algorithmMode |
The mode for applying the watershed algorithm.
|
Enumeration | REPEATABLE | ||||||||
outputImage |
The output binary or label image. Its dimensions are forced to the same values as the input image. Its type depends on the outputType parameter. | Image | null |
Object Examples
std::shared_ptr< iolink::ImageView > ateneub_grad = ioformat::readImage( std::string( IMAGEDEVDATA_IMAGES_FOLDER ) + "ateneub_grad.tif" ); Waterpixel waterpixelAlgo; waterpixelAlgo.setInputImage( ateneub_grad ); waterpixelAlgo.setCellSize( 25 ); waterpixelAlgo.setFactor( 10 ); waterpixelAlgo.setAlgorithmMode( Waterpixel::AlgorithmMode::REPEATABLE ); waterpixelAlgo.setOutputType( Waterpixel::OutputType::SEPARATED_REGIONS ); waterpixelAlgo.execute(); std::cout << "outputImage:" << waterpixelAlgo.outputImage()->toString();
ateneub_grad = ioformat.read_image(imagedev_data.get_image_path("ateneub_grad.tif")) waterpixel_algo = imagedev.Waterpixel() waterpixel_algo.input_image = ateneub_grad waterpixel_algo.cell_size = 25 waterpixel_algo.factor = 10 waterpixel_algo.algorithm_mode = imagedev.Waterpixel.REPEATABLE waterpixel_algo.output_type = imagedev.Waterpixel.SEPARATED_REGIONS waterpixel_algo.execute() print( "output_image:", str( waterpixel_algo.output_image ) )
ImageView ateneub_grad = ViewIO.ReadImage( @"Data/images/ateneub_grad.tif" ); Waterpixel waterpixelAlgo = new Waterpixel { inputImage = ateneub_grad, cellSize = 25, factor = 10, algorithmMode = Waterpixel.AlgorithmMode.REPEATABLE, outputType = Waterpixel.OutputType.SEPARATED_REGIONS }; waterpixelAlgo.Execute(); Console.WriteLine( "outputImage:" + waterpixelAlgo.outputImage.ToString() );
Function Examples
std::shared_ptr< iolink::ImageView > ateneub_grad = ioformat::readImage( std::string( IMAGEDEVDATA_IMAGES_FOLDER ) + "ateneub_grad.tif" ); auto result = waterpixel( ateneub_grad, 25, 10, Waterpixel::AlgorithmMode::REPEATABLE, Waterpixel::OutputType::SEPARATED_REGIONS ); std::cout << "outputImage:" << result->toString();
ateneub_grad = ioformat.read_image(imagedev_data.get_image_path("ateneub_grad.tif")) result = imagedev.waterpixel( ateneub_grad, 25, 10, imagedev.Waterpixel.REPEATABLE, imagedev.Waterpixel.SEPARATED_REGIONS ) print( "output_image:", str( result ) )
ImageView ateneub_grad = ViewIO.ReadImage( @"Data/images/ateneub_grad.tif" ); IOLink.ImageView result = Processing.Waterpixel( ateneub_grad, 25, 10, Waterpixel.AlgorithmMode.REPEATABLE, Waterpixel.OutputType.SEPARATED_REGIONS ); Console.WriteLine( "outputImage:" + result.ToString() );