EigenDecomposition3d
Performs the singular value decomposition (SVD) of a 3D tensor field image.
Access to parameter description
This algorithm creates one or several output images containing the eigenvectors and/or eigenvalues of the input matrix image I (or 3D tensor field). The input image must have six channels, where each channel contains one of the unique components of a 3x3 symmetric matrix. The redundant components are not contained in the input image.
Let A(P) be the 3x3 symmetric matrix at position P=(x,y,z).
The input image I has 6 spectral component values s at the spatial position P:
See also
Access to parameter description
This algorithm creates one or several output images containing the eigenvectors and/or eigenvalues of the input matrix image I (or 3D tensor field). The input image must have six channels, where each channel contains one of the unique components of a 3x3 symmetric matrix. The redundant components are not contained in the input image.
Let A(P) be the 3x3 symmetric matrix at position P=(x,y,z).
The input image I has 6 spectral component values s at the spatial position P:
- I(P,0)=A(P)1,1
- I(P,1)=A(P)1,2
- I(P,2)=A(P)1,3
- I(P,3)=A(P)2,2
- I(P,4)=A(P)2,3
- I(P,5)=A(P)3,3
See also
Function Syntax
This function returns a EigenDecomposition3dOutput structure containing outputVectorImage1, outputVectorImage2, outputVectorImage3 and outputEigenvaluesImage.
// Output structure of the eigenDecomposition3d function. struct EigenDecomposition3dOutput { /// The first eigenvector output image containing the largest eigenvalue. std::shared_ptr< iolink::ImageView > outputVectorImage1; /// The second eigenvector image containing the medium eigenvalue. std::shared_ptr< iolink::ImageView > outputVectorImage2; /// The third eigenvector image containing the smallest eigenvalue. std::shared_ptr< iolink::ImageView > outputVectorImage3; /// The eigenvalues output image. Each channel corresponds to an eigenvalue, from the largest to the smallest. std::shared_ptr< iolink::ImageView > outputEigenvaluesImage; }; // Function prototype
EigenDecomposition3dOutput eigenDecomposition3d( std::shared_ptr< iolink::ImageView > inputTensorImage, int32_t outputSelection, std::shared_ptr< iolink::ImageView > outputVectorImage1 = NULL, std::shared_ptr< iolink::ImageView > outputVectorImage2 = NULL, std::shared_ptr< iolink::ImageView > outputVectorImage3 = NULL, std::shared_ptr< iolink::ImageView > outputEigenvaluesImage = NULL );
Class Syntax
Parameters
Parameter Name | Description | Type | Supported Values | Default Value | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() |
inputTensorImage |
The input image of which each voxel represents a 3x3 symmetric matrix. This image must have the float data type and contain 6 channels.
The 6 channels must be in the following order: (A11,A12,A13,A22,A23,A33) where A is a symmetric 3x3 matrix (or 3D tensor). |
Image | Binary, Label or Multispectral | nullptr | ||||||||
![]() |
outputSelection |
The output images to be computed. Several outputs can be generated by combining the associated enumerated values.
|
MultipleChoice | EIGEN_VECTOR_1 | EIGEN_VECTOR_2 | EIGEN_VALUES | |||||||||
![]() |
outputVectorImage1 |
The first eigenvector output image containing the largest eigenvalue.
The X, Y and Z dimensions of this output image are the same as the input but the number of channels is three (channel 0: X component, channel 1: Y component, channel 2: Z component). The calibration (voxel size, origin, orientation) is the same as the input image. The output data type is forced to float. |
Image | nullptr | |||||||||
![]() |
outputVectorImage2 |
The second eigenvector image containing the medium eigenvalue.
The X, Y and Z dimensions of this output image are the same as the input but the number of channels is three (channel 0: X component, channel 1: Y component, channel 2: Z component). The calibration (voxel size, origin, orientation) is the same as the input image. The output data type is forced to float. |
Image | nullptr | |||||||||
![]() |
outputVectorImage3 |
The third eigenvector image containing the smallest eigenvalue.
The X, Y and Z dimensions of this output image are the same as the input but the number of channels is three (channel 0: X component, channel 1: Y component, channel 2: Z component). The calibration (voxel size, origin, orientation) is the same as the input image. The output data type is forced to float. |
Image | nullptr | |||||||||
![]() |
outputEigenvaluesImage |
The eigenvalues output image. Each channel corresponds to an eigenvalue, from the largest to the smallest.
The X, Y and Z dimensions of this output image are the same as the input but the number of channels is three (channel 0: largest eigenvalue, channel 1: medium eigenvalue, channel 2: smallest eigenvalue). The calibration (voxel size, origin, orientation) is the same values as the input image. The output data type is forced to float. |
Image | nullptr |
Object Examples
auto neuron_hessian = readVipImage( std::string( IMAGEDEVDATA_IMAGES_FOLDER ) + "neuron_hessian.vip" ); EigenDecomposition3d eigenDecomposition3dAlgo; eigenDecomposition3dAlgo.setInputTensorImage( neuron_hessian ); eigenDecomposition3dAlgo.setOutputSelection( 15 ); eigenDecomposition3dAlgo.execute(); std::cout << "outputVectorImage1:" << eigenDecomposition3dAlgo.outputVectorImage1()->toString(); std::cout << "outputVectorImage2:" << eigenDecomposition3dAlgo.outputVectorImage2()->toString(); std::cout << "outputVectorImage3:" << eigenDecomposition3dAlgo.outputVectorImage3()->toString(); std::cout << "outputEigenvaluesImage:" << eigenDecomposition3dAlgo.outputEigenvaluesImage()->toString();
Function Examples
auto neuron_hessian = readVipImage( std::string( IMAGEDEVDATA_IMAGES_FOLDER ) + "neuron_hessian.vip" ); auto result = eigenDecomposition3d( neuron_hessian, 15 ); std::cout << "outputVectorImage1:" << result.outputVectorImage1->toString(); std::cout << "outputVectorImage2:" << result.outputVectorImage2->toString(); std::cout << "outputVectorImage3:" << result.outputVectorImage3->toString(); std::cout << "outputEigenvaluesImage:" << result.outputEigenvaluesImage->toString();