EigenDecomposition2d
Performs the singular value decomposition (SVD) of a 2D tensor field image.
Access to parameter description
This algorithm creates one or several output images containing the eigenvectors and/or eigenvalues of the input matrix image I (or 2D tensor field). The input image must have three channels, where each channel contains one of the unique components of a 2x2 symmetric matrix. The redundant components are not contained in the input image.
Let A(P) be the 2x2 symmetric matrix at position P=(x,y).
The input image I has three spectral component values s at the spatial position P:
See also
Access to parameter description
This algorithm creates one or several output images containing the eigenvectors and/or eigenvalues of the input matrix image I (or 2D tensor field). The input image must have three channels, where each channel contains one of the unique components of a 2x2 symmetric matrix. The redundant components are not contained in the input image.
Let A(P) be the 2x2 symmetric matrix at position P=(x,y).
The input image I has three spectral component values s at the spatial position P:
- I(P,0)=A(P)1,1
- I(P,1)=A(P)1,2
- I(P,2)=A(P)2,2
See also
Function Syntax
This function returns a EigenDecomposition2dOutput structure containing outputVectorImage1, outputVectorImage2 and outputEigenvaluesImage.
// Output structure of the eigenDecomposition2d function. struct EigenDecomposition2dOutput { /// The first eigenvector output image containing the largest eigenvalue. std::shared_ptr< iolink::ImageView > outputVectorImage1; /// The second eigenvector output image containing the smallest eigenvalue. std::shared_ptr< iolink::ImageView > outputVectorImage2; /// The eigenvalues output image. Each channel corresponds to an eigenvalue, from the largest to the smallest. std::shared_ptr< iolink::ImageView > outputEigenvaluesImage; }; // Function prototype
EigenDecomposition2dOutput eigenDecomposition2d( std::shared_ptr< iolink::ImageView > inputTensorImage, int32_t outputSelection, std::shared_ptr< iolink::ImageView > outputVectorImage1 = NULL, std::shared_ptr< iolink::ImageView > outputVectorImage2 = NULL, std::shared_ptr< iolink::ImageView > outputEigenvaluesImage = NULL );
Class Syntax
Parameters
Parameter Name | Description | Type | Supported Values | Default Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
![]() |
inputTensorImage |
The input image of which each pixel represents a 2x2 symmetric matrix. This image must have the float data type and contain three channels.
The three channels must be in the following order: (A11,A12,A22) where A is a symmetric 2x2 matrix (or 2D tensor). |
Image | Binary, Label or Multispectral | nullptr | ||||||
![]() |
outputSelection |
The output images to be computed. Several outputs can be generated by combining the associated enumerated values.
|
MultipleChoice | EIGEN_VECTOR_1 | EIGEN_VALUES | |||||||
![]() |
outputVectorImage1 |
The first eigenvector output image containing the largest eigenvalue.
The X and Y dimensions of this output image are the same as the input but the number of channels is two (channel 0: X component, channel 1: Y component). The calibration (voxel size, origin, orientation) is the same as the input image. The output data type is forced to float. |
Image | nullptr | |||||||
![]() |
outputVectorImage2 |
The second eigenvector output image containing the smallest eigenvalue.
The X and Y dimensions of this output image are the same as the input but the number of channels is two (channel 0: X component, channel 1: Y component). The calibration (voxel size, origin, orientation) is the same as the input image. The output data type is forced to float. |
Image | nullptr | |||||||
![]() |
outputEigenvaluesImage |
The eigenvalues output image. Each channel corresponds to an eigenvalue, from the largest to the smallest.
The X and Y dimensions of this output image are the same as the input but the number of channels is two (channel 0: largest eigenvalue, channel 1: smallest eigenvalue). The calibration (voxel size, origin, orientation) is the same values as the input image. The output data type is forced to float. |
Image | nullptr |
Object Examples
auto retina_hessian = readVipImage( std::string( IMAGEDEVDATA_IMAGES_FOLDER ) + "retina_hessian.vip" ); EigenDecomposition2d eigenDecomposition2dAlgo; eigenDecomposition2dAlgo.setInputTensorImage( retina_hessian ); eigenDecomposition2dAlgo.setOutputSelection( 7 ); eigenDecomposition2dAlgo.execute(); std::cout << "outputVectorImage1:" << eigenDecomposition2dAlgo.outputVectorImage1()->toString(); std::cout << "outputVectorImage2:" << eigenDecomposition2dAlgo.outputVectorImage2()->toString(); std::cout << "outputEigenvaluesImage:" << eigenDecomposition2dAlgo.outputEigenvaluesImage()->toString();
Function Examples
auto retina_hessian = readVipImage( std::string( IMAGEDEVDATA_IMAGES_FOLDER ) + "retina_hessian.vip" ); auto result = eigenDecomposition2d( retina_hessian, 7 ); std::cout << "outputVectorImage1:" << result.outputVectorImage1->toString(); std::cout << "outputVectorImage2:" << result.outputVectorImage2->toString(); std::cout << "outputEigenvaluesImage:" << result.outputEigenvaluesImage->toString();