CartesianToPolar2d
Transforms a pair of real and imaginary part two-dimensional images into a pair of module and phase images.
Access to parameter description
For an introduction: see section Frequency Domain.
This algorithm computes the cartesian-to-polar transformation or real/imaginary to the module/phase transformation.
If $I_1$ is the real part or $X$ coordinate image and $I_2$ the imaginary part or $Y$ coordinate image, then:
Access to parameter description
For an introduction: see section Frequency Domain.
This algorithm computes the cartesian-to-polar transformation or real/imaginary to the module/phase transformation.
If $I_1$ is the real part or $X$ coordinate image and $I_2$ the imaginary part or $Y$ coordinate image, then:
- Module image $O_1$ is defined as: $O_1(n,m)=\sqrt{I_1^2(n,m)+I_2^2(n,m)}$
- Phase image $O_2$ is defined as: $O_2(n,m)=\tan^{-1}\left(\frac{I_2(n,m)}{I_1(n,m)}\right)$
Function Syntax
This function returns a CartesianToPolar2dOutput structure containing the outputModulusImage and outputPhaseImage output parameters.
// Output structure. struct CartesianToPolar2dOutput { std::shared_ptr< iolink::ImageView > outputModulusImage; std::shared_ptr< iolink::ImageView > outputPhaseImage; }; // Function prototype. CartesianToPolar2dOutput cartesianToPolar2d( std::shared_ptr< iolink::ImageView > inputRealImage, std::shared_ptr< iolink::ImageView > inputImaginaryImage, std::shared_ptr< iolink::ImageView > outputModulusImage = NULL, std::shared_ptr< iolink::ImageView > outputPhaseImage = NULL );
This function returns a tuple containing the output_modulus_image and output_phase_image output parameters.
// Function prototype. cartesian_to_polar_2d( input_real_image, input_imaginary_image, output_modulus_image = None, output_phase_image = None )
This function returns a CartesianToPolar2dOutput structure containing the outputModulusImage and outputPhaseImage output parameters.
/// Output structure of the CartesianToPolar2d function. public struct CartesianToPolar2dOutput { public IOLink.ImageView outputModulusImage; public IOLink.ImageView outputPhaseImage; }; // Function prototype. public static CartesianToPolar2dOutput CartesianToPolar2d( IOLink.ImageView inputRealImage, IOLink.ImageView inputImaginaryImage, IOLink.ImageView outputModulusImage = null, IOLink.ImageView outputPhaseImage = null );
Class Syntax
Parameters
Class Name | CartesianToPolar2d |
---|
Parameter Name | Description | Type | Supported Values | Default Value | |
---|---|---|---|---|---|
inputRealImage |
The real part input image. It must be a floating point image. | Image | Grayscale or Multispectral | nullptr | |
inputImaginaryImage |
The imaginary part input image. This image must have same dimensions and data type as the real input image. | Image | Grayscale or Multispectral | nullptr | |
outputModulusImage |
The output modulus image. Its dimensions and type are forced to the same values as the input. | Image | nullptr | ||
outputPhaseImage |
The output phase image. Its dimensions and type are forced to the same values as the input. | Image | nullptr |
Object Examples
auto polystyrene_float = readVipImage( std::string( IMAGEDEVDATA_IMAGES_FOLDER ) + "polystyrene_float.vip" ); CartesianToPolar2d cartesianToPolar2dAlgo; cartesianToPolar2dAlgo.setInputRealImage( polystyrene_float ); cartesianToPolar2dAlgo.setInputImaginaryImage( polystyrene_float ); cartesianToPolar2dAlgo.execute(); std::cout << "outputModulusImage:" << cartesianToPolar2dAlgo.outputModulusImage()->toString(); std::cout << "outputPhaseImage:" << cartesianToPolar2dAlgo.outputPhaseImage()->toString();
polystyrene_float = imagedev.read_vip_image(imagedev_data.get_image_path("polystyrene_float.vip")) cartesian_to_polar_2d_algo = imagedev.CartesianToPolar2d() cartesian_to_polar_2d_algo.input_real_image = polystyrene_float cartesian_to_polar_2d_algo.input_imaginary_image = polystyrene_float cartesian_to_polar_2d_algo.execute() print( "output_modulus_image:", str( cartesian_to_polar_2d_algo.output_modulus_image ) ) print( "output_phase_image:", str( cartesian_to_polar_2d_algo.output_phase_image ) )
ImageView polystyrene_float = Data.ReadVipImage( @"Data/images/polystyrene_float.vip" ); CartesianToPolar2d cartesianToPolar2dAlgo = new CartesianToPolar2d { inputRealImage = polystyrene_float, inputImaginaryImage = polystyrene_float }; cartesianToPolar2dAlgo.Execute(); Console.WriteLine( "outputModulusImage:" + cartesianToPolar2dAlgo.outputModulusImage.ToString() ); Console.WriteLine( "outputPhaseImage:" + cartesianToPolar2dAlgo.outputPhaseImage.ToString() );
Function Examples
auto polystyrene_float = readVipImage( std::string( IMAGEDEVDATA_IMAGES_FOLDER ) + "polystyrene_float.vip" ); auto result = cartesianToPolar2d( polystyrene_float, polystyrene_float ); std::cout << "outputModulusImage:" << result.outputModulusImage->toString(); std::cout << "outputPhaseImage:" << result.outputPhaseImage->toString();
polystyrene_float = imagedev.read_vip_image(imagedev_data.get_image_path("polystyrene_float.vip")) result_output_modulus_image, result_output_phase_image = imagedev.cartesian_to_polar_2d( polystyrene_float, polystyrene_float ) print( "output_modulus_image:", str( result_output_modulus_image ) ) print( "output_phase_image:", str( result_output_phase_image ) )
ImageView polystyrene_float = Data.ReadVipImage( @"Data/images/polystyrene_float.vip" ); Processing.CartesianToPolar2dOutput result = Processing.CartesianToPolar2d( polystyrene_float, polystyrene_float ); Console.WriteLine( "outputModulusImage:" + result.outputModulusImage.ToString() ); Console.WriteLine( "outputPhaseImage:" + result.outputPhaseImage.ToString() );