EigenDecomposition2d
Performs the singular value decomposition (SVD) of a 2D tensor field image.
Access to parameter description
This algorithm creates one or several output images containing the eigenvectors and/or eigenvalues of the input matrix image $I$ (or 2D tensor field). The input image must have three channels, where each channel contains one of the unique components of a 2x2 symmetric matrix. The redundant components are not contained in the input image.
Let $A(P)$ be the 2x2 symmetric matrix at position $P=(x,y)$.
The input image $I$ has three spectral component values $s$ at the spatial position $P$:
See also
Access to parameter description
This algorithm creates one or several output images containing the eigenvectors and/or eigenvalues of the input matrix image $I$ (or 2D tensor field). The input image must have three channels, where each channel contains one of the unique components of a 2x2 symmetric matrix. The redundant components are not contained in the input image.
Let $A(P)$ be the 2x2 symmetric matrix at position $P=(x,y)$.
The input image $I$ has three spectral component values $s$ at the spatial position $P$:
- $I(P,0)=A(P)_{1,1}$
- $I(P,1)=A(P)_{1,2}$
- $I(P,2)=A(P)_{2,2}$
See also
Function Syntax
This function returns a EigenDecomposition2dOutput structure containing the outputVectorImage1, outputVectorImage2 and outputEigenvaluesImage output parameters.
// Output structure. struct EigenDecomposition2dOutput { std::shared_ptr< iolink::ImageView > outputVectorImage1; std::shared_ptr< iolink::ImageView > outputVectorImage2; std::shared_ptr< iolink::ImageView > outputEigenvaluesImage; }; // Function prototype. EigenDecomposition2dOutput eigenDecomposition2d( std::shared_ptr< iolink::ImageView > inputTensorImage, int32_t outputSelection, std::shared_ptr< iolink::ImageView > outputVectorImage1 = NULL, std::shared_ptr< iolink::ImageView > outputVectorImage2 = NULL, std::shared_ptr< iolink::ImageView > outputEigenvaluesImage = NULL );
This function returns a tuple containing the output_vector_image1, output_vector_image2 and output_eigenvalues_image output parameters.
// Function prototype. eigen_decomposition_2d( input_tensor_image, output_selection = 5, output_vector_image1 = None, output_vector_image2 = None, output_eigenvalues_image = None )
This function returns a EigenDecomposition2dOutput structure containing the outputVectorImage1, outputVectorImage2 and outputEigenvaluesImage output parameters.
/// Output structure of the EigenDecomposition2d function. public struct EigenDecomposition2dOutput { public IOLink.ImageView outputVectorImage1; public IOLink.ImageView outputVectorImage2; public IOLink.ImageView outputEigenvaluesImage; }; // Function prototype. public static EigenDecomposition2dOutput EigenDecomposition2d( IOLink.ImageView inputTensorImage, Int32 outputSelection = 5, IOLink.ImageView outputVectorImage1 = null, IOLink.ImageView outputVectorImage2 = null, IOLink.ImageView outputEigenvaluesImage = null );
Class Syntax
Parameters
Class Name | EigenDecomposition2d |
---|
Parameter Name | Description | Type | Supported Values | Default Value | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|
inputTensorImage |
The input image of which each pixel represents a 2x2 symmetric matrix. This image must have the float data type and contain three channels.
The three channels must be in the following order: $(A_{11}, A_{12}, A_{22})$ where $A$ is a symmetric 2x2 matrix (or 2D tensor). |
Image | Binary, Label or Multispectral | nullptr | |||||||
outputSelection |
The output images to be computed. Several outputs can be generated by combining the associated enumerated values.
|
MultipleChoice | EIGEN_VECTOR_1 | EIGEN_VALUES | ||||||||
outputVectorImage1 |
The first eigenvector output image containing the largest eigenvalue.
The X and Y dimensions of this output image are the same as the input but the number of channels is two (channel 0: X component, channel 1: Y component). The calibration (voxel size, origin, orientation) is the same as the input image. The output data type is forced to float. |
Image | nullptr | ||||||||
outputVectorImage2 |
The second eigenvector output image containing the smallest eigenvalue.
The X and Y dimensions of this output image are the same as the input but the number of channels is two (channel 0: X component, channel 1: Y component). The calibration (voxel size, origin, orientation) is the same as the input image. The output data type is forced to float. |
Image | nullptr | ||||||||
outputEigenvaluesImage |
The eigenvalues output image. Each channel corresponds to an eigenvalue, from the largest to the smallest.
The X and Y dimensions of this output image are the same as the input but the number of channels is two (channel 0: largest eigenvalue, channel 1: smallest eigenvalue). The calibration (voxel size, origin, orientation) is the same values as the input image. The output data type is forced to float. |
Image | nullptr |
Object Examples
auto retina_hessian = readVipImage( std::string( IMAGEDEVDATA_IMAGES_FOLDER ) + "retina_hessian.vip" ); EigenDecomposition2d eigenDecomposition2dAlgo; eigenDecomposition2dAlgo.setInputTensorImage( retina_hessian ); eigenDecomposition2dAlgo.setOutputSelection( 7 ); eigenDecomposition2dAlgo.execute(); std::cout << "outputVectorImage1:" << eigenDecomposition2dAlgo.outputVectorImage1()->toString(); std::cout << "outputVectorImage2:" << eigenDecomposition2dAlgo.outputVectorImage2()->toString(); std::cout << "outputEigenvaluesImage:" << eigenDecomposition2dAlgo.outputEigenvaluesImage()->toString();
retina_hessian = imagedev.read_vip_image(imagedev_data.get_image_path("retina_hessian.vip")) eigen_decomposition_2d_algo = imagedev.EigenDecomposition2d() eigen_decomposition_2d_algo.input_tensor_image = retina_hessian eigen_decomposition_2d_algo.output_selection = 7 eigen_decomposition_2d_algo.execute() print( "output_vector_image1:", str( eigen_decomposition_2d_algo.output_vector_image1 ) ) print( "output_vector_image2:", str( eigen_decomposition_2d_algo.output_vector_image2 ) ) print( "output_eigenvalues_image:", str( eigen_decomposition_2d_algo.output_eigenvalues_image ) )
ImageView retina_hessian = Data.ReadVipImage( @"Data/images/retina_hessian.vip" ); EigenDecomposition2d eigenDecomposition2dAlgo = new EigenDecomposition2d { inputTensorImage = retina_hessian, outputSelection = 7 }; eigenDecomposition2dAlgo.Execute(); Console.WriteLine( "outputVectorImage1:" + eigenDecomposition2dAlgo.outputVectorImage1.ToString() ); Console.WriteLine( "outputVectorImage2:" + eigenDecomposition2dAlgo.outputVectorImage2.ToString() ); Console.WriteLine( "outputEigenvaluesImage:" + eigenDecomposition2dAlgo.outputEigenvaluesImage.ToString() );
Function Examples
auto retina_hessian = readVipImage( std::string( IMAGEDEVDATA_IMAGES_FOLDER ) + "retina_hessian.vip" ); auto result = eigenDecomposition2d( retina_hessian, 7 ); std::cout << "outputVectorImage1:" << result.outputVectorImage1->toString(); std::cout << "outputVectorImage2:" << result.outputVectorImage2->toString(); std::cout << "outputEigenvaluesImage:" << result.outputEigenvaluesImage->toString();
retina_hessian = imagedev.read_vip_image(imagedev_data.get_image_path("retina_hessian.vip")) result_output_vector_image1, result_output_vector_image2, result_output_eigenvalues_image = imagedev.eigen_decomposition_2d( retina_hessian, 7 ) print( "output_vector_image1:", str( result_output_vector_image1 ) ) print( "output_vector_image2:", str( result_output_vector_image2 ) ) print( "output_eigenvalues_image:", str( result_output_eigenvalues_image ) )
ImageView retina_hessian = Data.ReadVipImage( @"Data/images/retina_hessian.vip" ); Processing.EigenDecomposition2dOutput result = Processing.EigenDecomposition2d( retina_hessian, 7 ); Console.WriteLine( "outputVectorImage1:" + result.outputVectorImage1.ToString() ); Console.WriteLine( "outputVectorImage2:" + result.outputVectorImage2.ToString() ); Console.WriteLine( "outputEigenvaluesImage:" + result.outputEigenvaluesImage.ToString() );