CannyEdgeDetector3d
Performs Canny's computational approach to edge detection on a three-dimensional grayscale image.
Access to parameter description
This algorithm extracts the local maxima of a smoothed gradient image by applying the following steps:
To complete the Canny edge detector method, a thresholding by hysteresis must be applied on this output image afterward.
A second output provides an estimation of the two threshold values necessary to perform this step.
Reference: J.F.Canny. "A computational approach to edge detection." IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.8, No 6, pp. 679-698, Nov. 1986.
See also
Access to parameter description
This algorithm extracts the local maxima of a smoothed gradient image by applying the following steps:
- Gaussian filtering
- Gradient computation
- Non maximum suppression in the gradient direction
To complete the Canny edge detector method, a thresholding by hysteresis must be applied on this output image afterward.
A second output provides an estimation of the two threshold values necessary to perform this step.
Reference: J.F.Canny. "A computational approach to edge detection." IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.8, No 6, pp. 679-698, Nov. 1986.
See also
Function Syntax
This function returns a CannyEdgeDetector3dOutput structure containing the outputImage and outputMeasurement output parameters.
// Output structure. struct CannyEdgeDetector3dOutput { std::shared_ptr< iolink::ImageView > outputImage; CannyEdgeDetectorMsr::Ptr outputMeasurement; }; // Function prototype. CannyEdgeDetector3dOutput cannyEdgeDetector3d( std::shared_ptr< iolink::ImageView > inputImage, iolink::Vector3d standardDeviation, std::shared_ptr< iolink::ImageView > outputImage = NULL, CannyEdgeDetectorMsr::Ptr outputMeasurement = NULL );
This function returns a tuple containing the output_image and output_measurement output parameters.
// Function prototype. canny_edge_detector_3d( input_image, standard_deviation = [1, 1, 1], output_image = None, output_measurement = None )
This function returns a CannyEdgeDetector3dOutput structure containing the outputImage and outputMeasurement output parameters.
/// Output structure of the CannyEdgeDetector3d function. public struct CannyEdgeDetector3dOutput { public IOLink.ImageView outputImage; public CannyEdgeDetectorMsr outputMeasurement; }; // Function prototype. public static CannyEdgeDetector3dOutput CannyEdgeDetector3d( IOLink.ImageView inputImage, double[] standardDeviation = null, IOLink.ImageView outputImage = null, CannyEdgeDetectorMsr outputMeasurement = null );
Class Syntax
Parameters
Class Name | CannyEdgeDetector3d |
---|
Parameter Name | Description | Type | Supported Values | Default Value | |
---|---|---|---|---|---|
inputImage |
The input grayscale image. | Image | Binary, Label, Grayscale or Multispectral | nullptr | |
standardDeviation |
The gaussian filter standard deviation value. | Vector3d | >=0.1 | {1.f, 1.f, 1.f} | |
outputImage |
The output grayscale image representing the detected edges.
Its dimensions are forced to the same values as the input. Its data type is forced to floating point. |
Image | nullptr | ||
outputMeasurement |
The output measurement provides the estimated parameters of the threshold values used by the hysteresis. | CannyEdgeDetectorMsr | nullptr |
Object Examples
auto foam = readVipImage( std::string( IMAGEDEVDATA_IMAGES_FOLDER ) + "foam.vip" ); CannyEdgeDetector3d cannyEdgeDetector3dAlgo; cannyEdgeDetector3dAlgo.setInputImage( foam ); cannyEdgeDetector3dAlgo.setStandardDeviation( {1, 1, 1} ); cannyEdgeDetector3dAlgo.execute(); std::cout << "outputImage:" << cannyEdgeDetector3dAlgo.outputImage()->toString(); std::cout << "thresholdHigh: " << cannyEdgeDetector3dAlgo.outputMeasurement()->thresholdHigh( 0 ) ;
foam = imagedev.read_vip_image(imagedev_data.get_image_path("foam.vip")) canny_edge_detector_3d_algo = imagedev.CannyEdgeDetector3d() canny_edge_detector_3d_algo.input_image = foam canny_edge_detector_3d_algo.standard_deviation = [1, 1, 1] canny_edge_detector_3d_algo.execute() print( "output_image:", str( canny_edge_detector_3d_algo.output_image ) ) print( "thresholdHigh: ", str( canny_edge_detector_3d_algo.output_measurement.threshold_high( 0 ) ) )
ImageView foam = Data.ReadVipImage( @"Data/images/foam.vip" ); CannyEdgeDetector3d cannyEdgeDetector3dAlgo = new CannyEdgeDetector3d { inputImage = foam, standardDeviation = new double[]{1, 1, 1} }; cannyEdgeDetector3dAlgo.Execute(); Console.WriteLine( "outputImage:" + cannyEdgeDetector3dAlgo.outputImage.ToString() ); Console.WriteLine( "thresholdHigh: " + cannyEdgeDetector3dAlgo.outputMeasurement.thresholdHigh( 0 ) );
Function Examples
auto foam = readVipImage( std::string( IMAGEDEVDATA_IMAGES_FOLDER ) + "foam.vip" ); auto result = cannyEdgeDetector3d( foam, {1, 1, 1} ); std::cout << "outputImage:" << result.outputImage->toString(); std::cout << "thresholdHigh: " << result.outputMeasurement->thresholdHigh( 0 ) ;
foam = imagedev.read_vip_image(imagedev_data.get_image_path("foam.vip")) result_output_image, result_output_measurement = imagedev.canny_edge_detector_3d( foam, [1, 1, 1] ) print( "output_image:", str( result_output_image ) ) print( "thresholdHigh: ", str( result_output_measurement.threshold_high( 0 ) ) )
ImageView foam = Data.ReadVipImage( @"Data/images/foam.vip" ); Processing.CannyEdgeDetector3dOutput result = Processing.CannyEdgeDetector3d( foam, new double[]{1, 1, 1} ); Console.WriteLine( "outputImage:" + result.outputImage.ToString() ); Console.WriteLine( "thresholdHigh: " + result.outputMeasurement.thresholdHigh( 0 ) );