GradientOperator2d
Provides different algorithms to perform an edge detection based on the first derivative of a two-dimensional image.
Access to parameter description
This command is deprecated, it will be removed in ImageDev 2025.1.
You can use GradientVector2d or GradientMagnitude2d instead.
For an introduction:
The following algorithms are proposed to extract the edges of an image:
[1] R.Deriche. "Using Canny's criteria to derive a recursively implemented optimal edge detector". International Journal of Computer Vision, vol.1, no 2, pp. 167-187, Jun. 1987.
[2] J.Shen, S.Castan. "An optimal linear operator for step edge detection". CVGIP : Graphical Models and Image Processing, vol.54, no 2, pp. 112-133, Mar. 1992.
[3] J.F.Canny. "A computational approach to edge detection." IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.8, No 6, pp. 679-698, Nov. 1986.
See also
Access to parameter description
This command is deprecated, it will be removed in ImageDev 2025.1.
You can use GradientVector2d or GradientMagnitude2d instead.
For an introduction:
- section Edge Detection
- section Gradient
- section Images Filters
The following algorithms are proposed to extract the edges of an image:
- Canny-Deriche: It performs a recursive gradient computation with an IIR (Infinite Impulse Response) filter by derivating the Deriche [1] smoothing filter which has the two-dimensional form: f(x,y)=b2(α|x|+1)e−α|x|⋅(α|y|+1)e−α|y| where b=α4 For color images, the magnitude is computed with the maximum of intensity or the Euclidean mean of the color components.
- Shen-Castan: It calculates the gradient of Shen and Castan [2]. It is
a recursive and exponential filter that smooths an object and then extracts
its edges. It is based on the Shen operator:
f(x,y)=p24e(−p(|x|+|y|))
The highest p is, the more edges we get. For color images the magnitude is computed with the maximum of intensity or the Euclidean mean of the color components. - Canny: It is similar to Canny-Deriche but using a FIR (finite impulse response) filter [3]. It performs an approximation to get the Canny-Deriche in X and Y directions using a convolution kernel 7x5 for X and 5x7 for Y. The result is nearly the same as Canny-Deriche, but the process is much faster.
- Gaussian: It performs a convolution with the derivatives of a Gaussian function along each image axis.
- Sobel: It performs a convolution with the Sobel Kernel. It cannot be applied on color images. Gx=[−10+1−20+2−10+1]andGy=[−1−2−1000+1+2+1]
- Prewitt: It performs a convolution with the Prewitt Kernel. It cannot be applied on color images. Gx=[−10+1−10+1−10+1]andGy=[−1−1−1000+1+1+1]
- The output data type is determined by applying the Basic rules defined for arithmetic operations.
- To limit overflows, some normalizations are applied with most of the proposed operators by dividing the output gray levels by the sum of absolute values of the kernel coefficients.
- The Prewitt and Sobel operators do not apply normalizations and are thus inclined to produce overflows.
- By default, the maximum component of each directional gradient is computed. Depending on the selected operator, other output can be selected such as the Euclidean norm or the gradient components.
- The smoothing factor has a totally different meaning depending on the selected gradient operator. It represents a smoothing percentage with Canny-Deriche, a sharpenness factor with Shen and Castan, a standard-deviation with the Gaussian and is ignored with Canny, Sobel and Prewitt.
[1] R.Deriche. "Using Canny's criteria to derive a recursively implemented optimal edge detector". International Journal of Computer Vision, vol.1, no 2, pp. 167-187, Jun. 1987.
[2] J.Shen, S.Castan. "An optimal linear operator for step edge detection". CVGIP : Graphical Models and Image Processing, vol.54, no 2, pp. 112-133, Mar. 1992.
[3] J.F.Canny. "A computational approach to edge detection." IEEE Transactions on Pattern Analysis and Machine Intelligence, vol.8, No 6, pp. 679-698, Nov. 1986.
See also
Function Syntax
This function returns a GradientOperator2dOutput structure containing outputImageX, outputImageY, outputAmplitudeImage and outputOrientationImage.
// Output structure of the gradientOperator2d function. struct GradientOperator2dOutput { /// The X-gradient output image. std::shared_ptr< iolink::ImageView > outputImageX; /// The Y-gradient output image. std::shared_ptr< iolink::ImageView > outputImageY; /// The gradient amplitude output image. std::shared_ptr< iolink::ImageView > outputAmplitudeImage; /// The gradient orientation output image. std::shared_ptr< iolink::ImageView > outputOrientationImage; }; // Function prototype
GradientOperator2dOutput gradientOperator2d( std::shared_ptr< iolink::ImageView > inputImage, GradientOperator2d::GradientOperator gradientOperator, GradientOperator2d::GradientMode gradientMode, double smoothingFactor, std::shared_ptr< iolink::ImageView > outputImageX = NULL, std::shared_ptr< iolink::ImageView > outputImageY = NULL, std::shared_ptr< iolink::ImageView > outputAmplitudeImage = NULL, std::shared_ptr< iolink::ImageView > outputOrientationImage = NULL );
Class Syntax
Parameters
Class Name | GradientOperator2d |
---|
Parameter Name | Description | Type | Supported Values | Default Value | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
![]() |
inputImage |
The input image. | Image | Binary, Label, Grayscale or Multispectral | nullptr | ||||||||||||||
![]() |
gradientOperator |
The gradient operator to apply.
|
Enumeration | CANNY_DERICHE | |||||||||||||||
![]() |
gradientMode |
The output image to compute.
|
Enumeration | AMPLITUDE_MAXIMUM | |||||||||||||||
![]() |
smoothingFactor |
The smoothing factor defines the gradient sharpness. It is only used with Canny Deriche, Shen Castan, and Gaussian operators. It has a totally different meaning depending on the selected gradient operator. Its value must be between 0 and 100.
|
Float64 | ]0, 100] | 60 | ||||||||||||||
![]() |
outputImageX |
The X-gradient output image. | Image | nullptr | |||||||||||||||
![]() |
outputImageY |
The Y-gradient output image. | Image | nullptr | |||||||||||||||
![]() |
outputAmplitudeImage |
The gradient amplitude output image. | Image | nullptr | |||||||||||||||
![]() |
outputOrientationImage |
The gradient orientation output image. | Image | nullptr |
Object Examples
std::shared_ptr< iolink::ImageView > polystyrene = ioformat::readImage( std::string( IMAGEDEVDATA_IMAGES_FOLDER ) + "polystyrene.tif" ); GradientOperator2d gradientOperator2dAlgo; gradientOperator2dAlgo.setInputImage( polystyrene ); gradientOperator2dAlgo.setGradientOperator( GradientOperator2d::GradientOperator::CANNY_DERICHE ); gradientOperator2dAlgo.setGradientMode( GradientOperator2d::GradientMode::AMPLITUDE_MAXIMUM ); gradientOperator2dAlgo.setSmoothingFactor( 60.0 ); gradientOperator2dAlgo.execute(); std::cout << "outputImageX:" << gradientOperator2dAlgo.outputImageX()->toString(); std::cout << "outputImageY:" << gradientOperator2dAlgo.outputImageY()->toString(); std::cout << "outputAmplitudeImage:" << gradientOperator2dAlgo.outputAmplitudeImage()->toString(); std::cout << "outputOrientationImage:" << gradientOperator2dAlgo.outputOrientationImage()->toString();
Function Examples
std::shared_ptr< iolink::ImageView > polystyrene = ioformat::readImage( std::string( IMAGEDEVDATA_IMAGES_FOLDER ) + "polystyrene.tif" ); auto result = gradientOperator2d( polystyrene, GradientOperator2d::GradientOperator::CANNY_DERICHE, GradientOperator2d::GradientMode::AMPLITUDE_MAXIMUM, 60.0 ); std::cout << "outputImageX:" << result.outputImageX->toString(); std::cout << "outputImageY:" << result.outputImageY->toString(); std::cout << "outputAmplitudeImage:" << result.outputAmplitudeImage->toString(); std::cout << "outputOrientationImage:" << result.outputOrientationImage->toString();