CudaTemplateMatching3d
Computes a similarity score for each voxel of a three-dimensional image for localizing a searched structure.
Access to parameter description
This command is experimental, his signature may be modified between now and his final version.
For an introduction: section Image Correlation.
This algorithm aims to detect a known structure, defined in a template image, within a three-dimensional image.
The template can be optionally transformed to be compared at different orientations and scales at each position of the input image. These transformations are provided in a data frame where each row represents a transformation to test, and each column, a component of the rotation and scale factor to apply.
For each transformation of the template, a cross-correlation is performed with the input image and the highest correlation score is retained for each voxel.
Two output images are provided by the algorithm:
A.M. Roseman. "Particle finding in electron micrographs using a fast local correlation algorithm", Ultramicroscopy, 94(3-4), pp. 225-236, 2003.
See also
Access to parameter description
This command is experimental, his signature may be modified between now and his final version.
For an introduction: section Image Correlation.
This algorithm aims to detect a known structure, defined in a template image, within a three-dimensional image.
The template can be optionally transformed to be compared at different orientations and scales at each position of the input image. These transformations are provided in a data frame where each row represents a transformation to test, and each column, a component of the rotation and scale factor to apply.
For each transformation of the template, a cross-correlation is performed with the input image and the highest correlation score is retained for each voxel.
Two output images are provided by the algorithm:
- The main output image, indicating for each voxel the best correlation score of the template among all the tested transformations.
- The transform index image, indicating for each voxel the data frame row of the transformation providing this best correlation score.
- A binary mask, applied on the template. If this mask has a spherical shape, rotations can be disabled on it in order to save computation time.
- A filter mask, applied on the Fourier transform of the template image. It may be used to mitigate the missing wedge artifacts of an electron tomography acquisition or to emulate the point spread function of an optical system.
- Generate the list of rotations to apply on the template with RotationGenerator3d.
- Add the scale factors to apply to the generated data frame.
- In the case of an acquisition by electron tomography, generate a mask for the missing wedges with WedgeMaskImage3d.
- Run the template matching algorithm.
- Extract the relevant correlation peaks with PeakExtractor. The tuning of this step is critical in order to find appropriate parameters, providing a good compromise between true positive and false negative rates.
- Make the correspondance between the detected features and their associated transformations by reading the transform index of each extracted peak. The associated transformation can be found in the transform table provided as input of the template matching.
A.M. Roseman. "Particle finding in electron micrographs using a fast local correlation algorithm", Ultramicroscopy, 94(3-4), pp. 225-236, 2003.
See also
Function Syntax
This function returns a CudaTemplateMatching3dOutput structure containing outputImage and outputTransformIndexImage.
// Output structure of the cudaTemplateMatching3d function. struct CudaTemplateMatching3dOutput { /// The correlation scores image. Its dimensions are forced to the same values as the input. Its data type is forced to floating point. std::shared_ptr< iolink::ImageView > outputImage; /// The index image for transform. Its dimensions are forced to the same values as the input. Its data type is forced to unsigned integer. std::shared_ptr< iolink::ImageView > outputTransformIndexImage; /// The data frame indicating the rotations and scales to apply. std::shared_ptr< const iolink::DataFrameView > transformTable; }; // Function prototype
CudaTemplateMatching3dOutput cudaTemplateMatching3d( std::shared_ptr< iolink::ImageView > inputImage, std::shared_ptr< iolink::ImageView > inputTemplate, std::shared_ptr< iolink::ImageView > inputMask, std::shared_ptr< iolink::ImageView > inputFilter, bool rotateMask, std::shared_ptr< const iolink::DataFrameView > transformTable, CudaTemplateMatching3d::TilingMode tilingMode, const iolink::Vector3u32& tileSize, CudaContext::Ptr cudaContext, std::shared_ptr< iolink::ImageView > outputImage = nullptr, std::shared_ptr< iolink::ImageView > outputTransformIndexImage = nullptr );
This function returns a tuple containing output_image and output_transform_index_image.
// Function prototype. cuda_template_matching_3d(input_image: idt.ImageType, input_template: idt.ImageType, input_mask: idt.ImageType, input_filter: idt.ImageType, rotate_mask: bool = False, transform_table: Union[iolink.DataFrameView, None] = None, tiling_mode: CudaTemplateMatching3d.TilingMode = CudaTemplateMatching3d.TilingMode.NONE, tile_size: Iterable[int] = [128, 128, 128], cuda_context: Union[CudaContext, None] = None, output_image: idt.ImageType = None, output_transform_index_image: idt.ImageType = None) -> Tuple[idt.ImageType, idt.ImageType]
This function returns a CudaTemplateMatching3dOutput structure containing outputImage and outputTransformIndexImage.
/// Output structure of the CudaTemplateMatching3d function. public struct CudaTemplateMatching3dOutput { /// /// The correlation scores image. Its dimensions are forced to the same values as the input. Its data type is forced to floating point. /// public IOLink.ImageView outputImage; /// /// The index image for transform. Its dimensions are forced to the same values as the input. Its data type is forced to unsigned integer. /// public IOLink.ImageView outputTransformIndexImage; /// The data frame indicating the rotations and scales to apply. public IOLink.DataFrameView transformTable; }; // Function prototype. public static CudaTemplateMatching3dOutput CudaTemplateMatching3d( IOLink.ImageView inputImage, IOLink.ImageView inputTemplate, IOLink.ImageView inputMask, IOLink.ImageView inputFilter, bool rotateMask = false, IOLink.DataFrameView transformTable = null, CudaTemplateMatching3d.TilingMode tilingMode = ImageDev.CudaTemplateMatching3d.TilingMode.NONE, uint[] tileSize = null, Data.CudaContext cudaContext = null, IOLink.ImageView outputImage = null, IOLink.ImageView outputTransformIndexImage = null );
Class Syntax
Parameters
Parameter Name | Description | Type | Supported Values | Default Value | |||||
---|---|---|---|---|---|---|---|---|---|
![]() |
inputImage |
The input image where the template is searched. | Image | Grayscale | nullptr | ||||
![]() |
inputTemplate |
The template image. Its shape must be contained in the input image. | Image | Grayscale | nullptr | ||||
![]() |
inputMask |
The input mask. Its shape must be the same as the template image. This parameter is optional. | Image | Binary | nullptr | ||||
![]() |
inputFilter |
The input filter image used to correct the input template in the Fourier domain. Its spacing must be the same as the input image. This parameter is optional.
The image should correspond to a centered representation of a Fourier transform, the zero frequency (DC component) must be positioned at the center of the image. This ensures that the symmetry and frequency components are correctly interpreted. Furthermore, the dimensions of the image should be odd to allow for a true center pixel, which facilitates the proper alignment of the frequency components around this central point. Since the correction process will be applied to the transformed templates, determining the minimum image size is complex and not straightforward. To simplify, we advise supplying an image with dimensions that are at least twice the size of the template's largest dimension. |
Image | Binary or Grayscale | nullptr | ||||
![]() |
rotateMask |
The flag that indicates if the mask has to be rotated with the template.
It increases significantly the computation time but has to be set to True if the mask is not rotation invariant (not a sphere). This option can be used when only some rotations are applied. When some scale factors are provided in the transform table, it is recommended to set it to True. |
Bool | false | |||||
![]() |
transformTable |
The data frame indicating the rotations and scales to apply.
The columns are (RZ1, RX2, RZ3, SX, SY, SZ), where (RZ1, RX2, RZ3) represents the rotation components with the proper Euler angles ZXZ convention, and (SX, SY, SZ), the scale factor for each axis. Their default values are respectively (0, 0, 0, 1, 1, 1). If some columns are omitted, their default values are considered. If this parameter is omitted no transform is applied (default values). The output of RotationGenerator3d can be directly set for this parameter. |
DataFrameViewConst | nullptr | |||||
![]() |
tilingMode |
The way to manage the GPU memory. If the input image is already on GPU, this parameter is ignored.
|
Enumeration | NONE | |||||
![]() |
tileSize |
The tile width and height in voxels. They must be greater than or equal to the correlation kernel width and height. This parameter is used only in USER_DEFINED tiling mode. | Vector3u32 | Any value | {128, 128, 128} | ||||
![]() |
cudaContext |
The CUDA context information.
For more information: CudaContext |
CudaContext | nullptr | |||||
![]() |
outputImage |
The correlation scores image. Its dimensions are forced to the same values as the input. Its data type is forced to floating point. | Image | nullptr | |||||
![]() |
outputTransformIndexImage |
The index image for transform. Its dimensions are forced to the same values as the input. Its data type is forced to unsigned integer. | Image | nullptr |
Parameter Name | Description | Type | Supported Values | Default Value | |||||
---|---|---|---|---|---|---|---|---|---|
![]() |
input_image |
The input image where the template is searched. | image | Grayscale | None | ||||
![]() |
input_template |
The template image. Its shape must be contained in the input image. | image | Grayscale | None | ||||
![]() |
input_mask |
The input mask. Its shape must be the same as the template image. This parameter is optional. | image | Binary | None | ||||
![]() |
input_filter |
The input filter image used to correct the input template in the Fourier domain. Its spacing must be the same as the input image. This parameter is optional.
The image should correspond to a centered representation of a Fourier transform, the zero frequency (DC component) must be positioned at the center of the image. This ensures that the symmetry and frequency components are correctly interpreted. Furthermore, the dimensions of the image should be odd to allow for a true center pixel, which facilitates the proper alignment of the frequency components around this central point. Since the correction process will be applied to the transformed templates, determining the minimum image size is complex and not straightforward. To simplify, we advise supplying an image with dimensions that are at least twice the size of the template's largest dimension. |
image | Binary or Grayscale | None | ||||
![]() |
rotate_mask |
The flag that indicates if the mask has to be rotated with the template.
It increases significantly the computation time but has to be set to True if the mask is not rotation invariant (not a sphere). This option can be used when only some rotations are applied. When some scale factors are provided in the transform table, it is recommended to set it to True. |
bool | False | |||||
![]() |
transform_table |
The data frame indicating the rotations and scales to apply.
The columns are (RZ1, RX2, RZ3, SX, SY, SZ), where (RZ1, RX2, RZ3) represents the rotation components with the proper Euler angles ZXZ convention, and (SX, SY, SZ), the scale factor for each axis. Their default values are respectively (0, 0, 0, 1, 1, 1). If some columns are omitted, their default values are considered. If this parameter is omitted no transform is applied (default values). The output of RotationGenerator3d can be directly set for this parameter. |
data_frame_view_const | None | |||||
![]() |
tiling_mode |
The way to manage the GPU memory. If the input image is already on GPU, this parameter is ignored.
|
enumeration | NONE | |||||
![]() |
tile_size |
The tile width and height in voxels. They must be greater than or equal to the correlation kernel width and height. This parameter is used only in USER_DEFINED tiling mode. | vector3u32 | Any value | [128, 128, 128] | ||||
![]() |
cuda_context |
The CUDA context information.
For more information: CudaContext |
cuda_context | None | |||||
![]() |
output_image |
The correlation scores image. Its dimensions are forced to the same values as the input. Its data type is forced to floating point. | image | None | |||||
![]() |
output_transform_index_image |
The index image for transform. Its dimensions are forced to the same values as the input. Its data type is forced to unsigned integer. | image | None |
Parameter Name | Description | Type | Supported Values | Default Value | |||||
---|---|---|---|---|---|---|---|---|---|
![]() |
inputImage |
The input image where the template is searched. | Image | Grayscale | null | ||||
![]() |
inputTemplate |
The template image. Its shape must be contained in the input image. | Image | Grayscale | null | ||||
![]() |
inputMask |
The input mask. Its shape must be the same as the template image. This parameter is optional. | Image | Binary | null | ||||
![]() |
inputFilter |
The input filter image used to correct the input template in the Fourier domain. Its spacing must be the same as the input image. This parameter is optional.
The image should correspond to a centered representation of a Fourier transform, the zero frequency (DC component) must be positioned at the center of the image. This ensures that the symmetry and frequency components are correctly interpreted. Furthermore, the dimensions of the image should be odd to allow for a true center pixel, which facilitates the proper alignment of the frequency components around this central point. Since the correction process will be applied to the transformed templates, determining the minimum image size is complex and not straightforward. To simplify, we advise supplying an image with dimensions that are at least twice the size of the template's largest dimension. |
Image | Binary or Grayscale | null | ||||
![]() |
rotateMask |
The flag that indicates if the mask has to be rotated with the template.
It increases significantly the computation time but has to be set to True if the mask is not rotation invariant (not a sphere). This option can be used when only some rotations are applied. When some scale factors are provided in the transform table, it is recommended to set it to True. |
Bool | false | |||||
![]() |
transformTable |
The data frame indicating the rotations and scales to apply.
The columns are (RZ1, RX2, RZ3, SX, SY, SZ), where (RZ1, RX2, RZ3) represents the rotation components with the proper Euler angles ZXZ convention, and (SX, SY, SZ), the scale factor for each axis. Their default values are respectively (0, 0, 0, 1, 1, 1). If some columns are omitted, their default values are considered. If this parameter is omitted no transform is applied (default values). The output of RotationGenerator3d can be directly set for this parameter. |
DataFrameViewConst | null | |||||
![]() |
tilingMode |
The way to manage the GPU memory. If the input image is already on GPU, this parameter is ignored.
|
Enumeration | NONE | |||||
![]() |
tileSize |
The tile width and height in voxels. They must be greater than or equal to the correlation kernel width and height. This parameter is used only in USER_DEFINED tiling mode. | Vector3u32 | Any value | {128, 128, 128} | ||||
![]() |
cudaContext |
The CUDA context information.
For more information: CudaContext |
CudaContext | null | |||||
![]() |
outputImage |
The correlation scores image. Its dimensions are forced to the same values as the input. Its data type is forced to floating point. | Image | null | |||||
![]() |
outputTransformIndexImage |
The index image for transform. Its dimensions are forced to the same values as the input. Its data type is forced to unsigned integer. | Image | null |
Object Examples
auto fibers = readVipImage( std::string( IMAGEDEVDATA_IMAGES_FOLDER ) + "fibers.vip" ); auto fibers_template = readVipImage( std::string( IMAGEDEVDATA_IMAGES_FOLDER ) + "fibers_template.vip" ); auto fibers_template_mask = readVipImage( std::string( IMAGEDEVDATA_IMAGES_FOLDER ) + "fibers_template_mask.vip" ); CudaTemplateMatching3d cudaTemplateMatching3dAlgo; cudaTemplateMatching3dAlgo.setInputImage( fibers ); cudaTemplateMatching3dAlgo.setInputTemplate( fibers_template ); cudaTemplateMatching3dAlgo.setInputMask( fibers_template_mask ); cudaTemplateMatching3dAlgo.setInputFilter( nullptr ); cudaTemplateMatching3dAlgo.setRotateMask( false ); cudaTemplateMatching3dAlgo.setTransformTable( nullptr ); cudaTemplateMatching3dAlgo.setTilingMode( CudaTemplateMatching3d::TilingMode::NONE ); cudaTemplateMatching3dAlgo.setTileSize( {128, 128, 128} ); cudaTemplateMatching3dAlgo.setCudaContext( nullptr ); cudaTemplateMatching3dAlgo.setOutputImage( iolink::ImageViewFactory::allocate( iolink::VectorXu64( { 1, 1 } ), iolink::DataTypeId::UINT8 ) ); cudaTemplateMatching3dAlgo.setOutputTransformIndexImage( iolink::ImageViewFactory::allocate( iolink::VectorXu64( { 1, 1 } ), iolink::DataTypeId::UINT8 ) ); cudaTemplateMatching3dAlgo.execute(); std::cout << "outputImage:" << cudaTemplateMatching3dAlgo.outputImage()->toString(); std::cout << "outputTransformIndexImage:" << cudaTemplateMatching3dAlgo.outputTransformIndexImage()->toString();
fibers = imagedev.read_vip_image(imagedev_data.get_image_path("fibers.vip")) fibers_template = imagedev.read_vip_image(imagedev_data.get_image_path("fibers_template.vip")) fibers_template_mask = imagedev.read_vip_image(imagedev_data.get_image_path("fibers_template_mask.vip")) cuda_template_matching_3d_algo = imagedev.CudaTemplateMatching3d() cuda_template_matching_3d_algo.input_image = fibers cuda_template_matching_3d_algo.input_template = fibers_template cuda_template_matching_3d_algo.input_mask = fibers_template_mask cuda_template_matching_3d_algo.input_filter = None cuda_template_matching_3d_algo.rotate_mask = False cuda_template_matching_3d_algo.transform_table = None cuda_template_matching_3d_algo.tiling_mode = imagedev.CudaTemplateMatching3d.NONE cuda_template_matching_3d_algo.tile_size = [128, 128, 128] cuda_template_matching_3d_algo.cuda_context = None cuda_template_matching_3d_algo.execute() print("output_image:", str(cuda_template_matching_3d_algo.output_image)) print("output_transform_index_image:", str(cuda_template_matching_3d_algo.output_transform_index_image))
ImageView fibers = Data.ReadVipImage( @"Data/images/fibers.vip" ); ImageView fibers_template = Data.ReadVipImage( @"Data/images/fibers_template.vip" ); ImageView fibers_template_mask = Data.ReadVipImage( @"Data/images/fibers_template_mask.vip" ); CudaTemplateMatching3d cudaTemplateMatching3dAlgo = new CudaTemplateMatching3d { inputImage = fibers, inputTemplate = fibers_template, inputMask = fibers_template_mask, inputFilter = null, rotateMask = false, transformTable = null, tilingMode = CudaTemplateMatching3d.TilingMode.NONE, tileSize = new uint[]{128, 128, 128}, cudaContext = null }; cudaTemplateMatching3dAlgo.Execute(); Console.WriteLine( "outputImage:" + cudaTemplateMatching3dAlgo.outputImage.ToString() ); Console.WriteLine( "outputTransformIndexImage:" + cudaTemplateMatching3dAlgo.outputTransformIndexImage.ToString() );
Function Examples
auto fibers = readVipImage( std::string( IMAGEDEVDATA_IMAGES_FOLDER ) + "fibers.vip" ); auto fibers_template = readVipImage( std::string( IMAGEDEVDATA_IMAGES_FOLDER ) + "fibers_template.vip" ); auto fibers_template_mask = readVipImage( std::string( IMAGEDEVDATA_IMAGES_FOLDER ) + "fibers_template_mask.vip" ); auto result = cudaTemplateMatching3d( fibers, fibers_template, fibers_template_mask, nullptr, false, nullptr, CudaTemplateMatching3d::TilingMode::NONE, {128, 128, 128}, nullptr , iolink::ImageViewFactory::allocate( iolink::VectorXu64( { 1, 1 } ), iolink::DataTypeId::UINT8 ), iolink::ImageViewFactory::allocate( iolink::VectorXu64( { 1, 1 } ), iolink::DataTypeId::UINT8 )); std::cout << "outputImage:" << result.outputImage->toString(); std::cout << "outputTransformIndexImage:" << result.outputTransformIndexImage->toString();
fibers = imagedev.read_vip_image(imagedev_data.get_image_path("fibers.vip")) fibers_template = imagedev.read_vip_image(imagedev_data.get_image_path("fibers_template.vip")) fibers_template_mask = imagedev.read_vip_image(imagedev_data.get_image_path("fibers_template_mask.vip")) result_output_image, result_output_transform_index_image = imagedev.cuda_template_matching_3d(fibers, fibers_template, fibers_template_mask, None, False, None, imagedev.CudaTemplateMatching3d.NONE, [128, 128, 128], None) print("output_image:", str(result_output_image)) print("output_transform_index_image:", str(result_output_transform_index_image))
ImageView fibers = Data.ReadVipImage( @"Data/images/fibers.vip" ); ImageView fibers_template = Data.ReadVipImage( @"Data/images/fibers_template.vip" ); ImageView fibers_template_mask = Data.ReadVipImage( @"Data/images/fibers_template_mask.vip" ); Processing.CudaTemplateMatching3dOutput result = Processing.CudaTemplateMatching3d( fibers, fibers_template, fibers_template_mask, null, false, null, CudaTemplateMatching3d.TilingMode.NONE, new uint[]{128, 128, 128}, null ); Console.WriteLine( "outputImage:" + result.outputImage.ToString() ); Console.WriteLine( "outputTransformIndexImage:" + result.outputTransformIndexImage.ToString() );
© 2025 Thermo Fisher Scientific Inc. All rights reserved.